一次函数基本知识点总结

时间:2025-01-15 17:15:02 夏杰 总结 我要投稿
  • 相关推荐

一次函数基本知识点总结

  上学的时候,很多人都经常追着老师们要知识点吧,知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。还在为没有系统的知识点而发愁吗?以下是小编帮大家整理的一次函数基本知识点总结,欢迎阅读与收藏。

一次函数基本知识点总结

  一次函数基本知识点总结 1

  一次函数的定义

  一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。当b=0时,一次函数y=kx,又叫做正比例函数。

  1、一次函数的解析式的形式是y=kx+b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式。

  2、当b=0,k≠0时,y=kx仍是一次函数。

  3、当k=0,b≠0时,它不是一次函数。

  4、正比例函数是一次函数的特例,一次函数包括正比例函数。

  一次函数的图像及性质

  1、在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

  2、一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)。

  3、正比例函数的图像总是过原点。

  4、k,b与函数图像所在象限的关系:

  当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

  当k>0,b>0时,直线通过一、二、三象限;

  当k>0,b<0时,直线通过一、三、四象限;

  当k<0,b>0时,直线通过一、二、四象限;

  当k<0,b<0时,直线通过二、三、四象限;

  当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

  一次函数的图象与性质的口诀

  一次函数是直线,图象经过三象限;

  正比例函数更简单,经过原点一直线;

  两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;

  k为负来左下展,变化规律正相反;

  k的绝对值越大,线离横轴就越远。

  拓展阅读:一次函数的解题方法

  理解一次函数和其它知识的联系

  一次函数和代数式以及方程有着密不可分的联系。如一次函数和正比例函数仍然是函数,同时,等号的两边又都是代数式。需要注意的是,与一般代数式有很大区别。首先,一次函数和正比例函数都只能存在两个变量,而代数式可以是多个变量;其次,一次函数中的变量指数只能是1,而代数式中变量指数还可以是1以外的数。另外,一次函数解析式也可以理解为二元一次方程。

  掌握一次函数的解析式的特征

  一次函数解析式的结构特征:kx+b是关于x的一次二项式,其中常数b可以是任意实数,一次项系数k必须是非零数,k≠0,因为当k = 0时,y = b(b是常数),由于没有一次项,这样的函数不是一次函数;而当b = 0,k≠0,y = kx既是正比例函数,也是一次函数。

  应用一次函数解决实际问题

  1、分清哪些是已知量,哪些是未知量,尤其要弄清哪两种量是相关联的量,且其中一种量因另一种量的变化而变化;

  2、找出具有相关联的两种量的等量关系之后,明确哪种量是另一种量的函数;

  3、在实际问题中,一般存在着三种量,如距离、时间、速度等等,在这三种量中,当且仅当其中一种量时间(或速度)不变时,距离与速度(或时间)才成正比例,也就是说,距离(s)是时间(t)或速度( )的'正比例函数;

  4、求一次函数与正比例函数的关系式,一般采取待定系数法。

  数形结合

  方程,不等式,不等式组,方程组我们都可以用一次函数的观点来理解。一元一次不等式实际上就看两条直线上下方的关系,求出端点后可以很容易把握解集,至于一元一次方程可以把左右两边看为两条直线来认识,直线交点的横坐标就是方程的解,至于二元一次方程组就是对应2条直线,方程组的解就是直线的交点,结合图形可以认识两直线的位置关系也可以把握交点个数。

  如果一个交点时候两条直线的k不同,如果无穷个交点就是k,b都一样,如果平行无交点就是k相同,b不一样。至于函数平移的问题可以化归为对应点平移。k反正不变然后用待定系数法得到平移后的方程。这就是化一般为特殊的解题方法。

  一次函数基本知识点总结 2

  分解因式

  一、公式:

  1、ma+mb+mc=m(a+b+c);

  2、a2—b2=(a+b)(a—b);

  3、a22ab+b2=(ab)2。

  二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

  1、把几个整式的积化成一个多项式的形式,是乘法运算。

  2、把一个多项式化成几个整式的积的形式,是因式分解。

  3、ma+mb+mcm(a+b+c)

  4、因式分解与整式乘法是相反方向的变形。

  三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式。提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式。找公因式的一般步骤:

  (1)若各项系数是整系数,取系数的公约数;

  (2)取相同的字母,字母的指数取较低的;

  (3)取相同的多项式,多项式的指数取较低的

  (4)所有这些因式的乘积即为公因式。

  四、分解因式的一般步骤为:

  (1)若有—先提取—,若多项式各项有公因式,则再提取公因式。

  (2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式。

  (3)每一个多项式都要分解到不能再分解为止。

  五、形如a2+2ab+b2或a2—2ab+b2的式子称为完全平方式。

  分解因式的方法:

  1、提公因式法。

  2、运用公式法。

  分式的四则运算

  乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

  除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

  乘方法则:分式乘方要把分子、分母各自乘方。用式子表示是:(其中n是正整数)

  加减法则:同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先通分,转化为同分母分式,然后再加减。

  注意

  (1)异分母分式相加减,“先通分”是关键,最简公分母确定后再通分,计算时要注意分式中符号的处理,特别是分子相减,要注意分子的整体性;

  (2)运算时顺序合理、步骤清晰;

  (3)运算结果必须化成最简分式或整式。

  数学有理数比大小知识点

  (1)正数永远比0大,负数永远比0小;

  (2)正数大于一切负数;

  (3)两个负数比较,绝对值大的反而小;

  (4)数轴上的两个数,右边的数总比左边的数大;

  (5)—1,—2,+1,+4,—0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

  数学线段的性质

  (1)线段公理:所有连接两点的线中,线段最短。也可简单说成:两点之间线段最短。

  (2)连接两点的线段的长度,叫做这两点的距离。

  (3)线段的中点到两端点的距离相等。

  (4)线段的大小关系和它们的长度的大小关系是一致的。

  初二下册数学期末重点

  一、轴对称图形

  1、把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

  2、把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点。

  3、轴对称图形和轴对称的区别与联系。

  4、轴对称的性质。

  ①关于某直线对称的两个图形是全等形。

  ②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

  ③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

  ④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

  二、线段的垂直平分线

  1、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

  2、线段垂直平分线上的点与这条线段的两个端点的距离相等;

  3、与一条线段两个端点距离相等的点,在线段的垂直平分线上;

  三、用坐标表示轴对称小结

  1、在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数。关于y轴对称的点横坐标互为相反数,纵坐标相等;

  2、三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等;

  四、(等腰三角形)知识点回顾

  1、等腰三角形的性质

  ①等腰三角形的两个底角相等。(等边对等角)

  ②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)

  2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)

  五、(等边三角形)知识点回顾

  1、等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600。

  2、等边三角形的判定:

  ①三个角都相等的三角形是等边三角形。

  ②有一个角是600的等腰三角形是等边三角形。

  3、在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。

  ①等腰三角形的性质

  定理:等腰三角形的两个底角相等(简称:等边对等角)

  推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

  推论2:等边三角形的各个角都相等,并且每个角都等于60°。

  ②等腰三角形的其他性质:

  (1)等腰直角三角形的两个底角相等且等于45°;

  (2)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

  (3)等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=

  ③等腰三角形的判定

  等腰三角形的判定定理及推论:

  定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的.边相等。

  推论1:三个角都相等的三角形是等边三角形

  推论2:有一个角是60°的等腰三角形是等边三角形。

  推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

  ④三角形中的中位线

  连接三角形两边中点的线段叫做三角形的中位线。

  (1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

  (2)要会区别三角形中线与中位线。

  三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

  三角形中位线定理的作用:

  位置关系:可以证明两条直线平行。

  数量关系:可以证明线段的倍分关系。

  常用结论:任一个三角形都有三条中位线,由此有:

  结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

  结论2:三条中位线将原三角形分割成四个全等的三角形。

  结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

  结论4:三角形一条中线和与它相交的中位线互相平分。

  结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

  数学经常遇到的问题解答

  1、要提高数学成绩首先要做什么?

  这一点,是很多学生所关注的,要提高数学成绩,首先就应该从基础知识学起。不少同学觉得基础知识过于简单,看两遍基本上就都会了。这种“自我感觉良好”其实是一种错觉,而真正考试时又觉得无从下手,这还是基础不牢的表现,因此要提高数学成绩先要把基础夯实。

  2、基础不好怎么学好数学?

  对于基础差的同学来说,课本是就是学好数学的秘籍,把课本上的定义、公式、定理全部弄懂,力争在理解的基础上全部背熟,每一道例题、每一道课后题都要掌握。我们知道只有把公式、定理烂熟于心,才能举一反三、活学活用,把课本的知识学透有两个好处,第一,强化基础;第二,提高得分能力。

  3、是否要采用题海战术?

  方法君曾不止一次提到了“题海战术”,题海战术究竟可不可取呢?“题海战术”其实也是一种学习方法,但很多学生只知道做题,不懂得总结,体现不出任何的学习效果。因此在做题后要总结至关重要,只有认真总结才能不断积累做题经验,这样才能取得理想成绩。

  4、做题总是粗心怎么办?

  很多学生成绩不好,会说自己是因为粗心导致的,其实“粗心”只是借口,真正的原因就是题做得少、基础知识不牢、没有清晰的解题思路、计算能力不强。因此在平时的学习中,一定要注重熟练度和精准度的练习。如果总是给自己找“粗心”的借口,也就变相否定了自己的学习弱点,所以,要告诉自己,高中数学没有“粗心”只有“不用心”。

  为什么要学习数学

  作为一门普及度极广的学科,数学在人类文明的发展史上一直占据着重要的地位。虽然很多人可能会对数学产生排斥,认为它枯燥无味,但事实上,数学是所有学科的基石之一,对我们日常生活以及未来的职业发展有着重大影响。下面我将详细阐述学习数学的重要性。

  首先,数学可以帮助我们提高逻辑思维能力。数学的学科性质使我们在学习的过程中时时刻刻面临着思考、推理、证明等诸多问题,而这些问题正是锻炼我们逻辑思维的好机会。通过长期的学习和练习,我们的思维能力得到提升,可以更加清晰地分析问题,更快速地找到正确的答案。这对我们在工作和生活中都非常有帮助,尤其是在解决复杂问题时更能得心应手。

  其次,数学在现代科技中起着至关重要的作用。在计算机科学、物理学、经济学、工程学等领域,数学可以帮助我们建立模型、分析数据、预测趋势,并且可以在实际应用中优化和改进。例如,在人工智能领域,深度学习技术所涉及的数学概念包括线性代数、微积分和概率论等,如果没有深厚的数学基础,很难理解和应用这些技术。同时,在工程学领域,许多机械、电子、化工等产品的设计和制造过程,也需要运用到数学知识,因此学习数学可以使我们更好地参与到现代科技的发展中。

  除此之外,数学也是一种普遍使用的语言,许多学科和领域都使用数学语言进行表达和交流。例如,在自然科学领域,生物学、化学、物理学等学科都使用数学语言来描述自然世界的规律和现象。在社会科学和商科领域,经济学和金融学运用的数学概念,如微积分、线性代数和统计学等,使得我们能够更好地理解经济和财务数据,并进行决策。因此,学习数学可以让我们更好地理解、沟通和交流各个领域的知识。

  最后,学习数学也可以为我们的职业发展带来广泛的机遇和发展空间。在许多领域,数学专业的毕业生都有很广泛的就业机会,如金融界、数据科学、研究机构、教育等。数学专业的人才,不只会提供理论支持,同时也能够解决现实中具体的问题,使其在各自领域脱颖而出。

  数学解题方法分别有哪些

  1、配方法

  所谓的公式是使用变换解析方程的同构方法,并将其中的一些分配给一个或多个多项式正整数幂的和形式。通过配方解决数学问题的公式。其中,用的最多的是配成完全平方式。匹配方法是数学中不断变形的重要方法,其应用非常广泛,在分解,简化根,它通常用于求解方程,证明方程和不等式,找到函数的极值和解析表达式。

  2、因式分解法

  因式分解是将多项式转换为几个积分产品的乘积。分解是恒定变形的基础。除了引入中学教科书中介绍的公因子法,公式法,群体分解法,交叉乘法法等外,还有很多方法可以进行因式分解。还有一些项目,如拆除物品的使用,根分解,替换,未确定的系数等等。

  3、换元法

  替代方法是数学中一个非常重要和广泛使用的解决问题的方法。我们通常称未知或变元。用新的参数替换原始公式的一部分或重新构建原始公式可以更简单,更容易解决。

  4、判别式法与韦达定理

  一元二次方程 ax2+ bx+ c=0( a、 b、 c属于 R, a≠0)根的判别, = b2—4 ac,不仅用来确定根的性质,还作为一个问题解决方法,代数变形,求解方程(组),求解不等式,研究函数,甚至几何以及三角函数都有非常广泛的应用。

  韦达定理除了知道二次方程的根外,还找到另一根;考虑到两个数的和和乘积的简单应用并寻找这两个数,也可以找到根的对称函数并量化二次方程根的符号。求解对称方程并解决一些与二次曲线有关的问题等,具有非常广泛的应用。

  5、待定系数法

  在解决数学问题时,如果我们首先判断我们所寻找的结果具有一定的形式,其中包含某些未决的系数,然后根据问题的条件列出未确定系数的方程,最后找到未确定系数的值或这些待定系数之间的关系。为了解决数学问题,这种问题解决方法被称为待定系数法。它是中学数学中常用的方法之一。

  6、构造法

  在解决问题时,我们通常通过分析条件和结论来使用这些方法来构建辅助元素。它可以是一个图表,一个方程(组),一个方程,一个函数,一个等价的命题等,架起连接条件和结论的桥梁。为了解决这个问题,这种解决问题的数学方法,我们称之为构造方法。运用结构方法解决问题可以使代数,三角形,几何等数学知识相互渗透,有助于解决问题。

【一次函数基本知识点总结】相关文章:

一次函数知识点总结03-13

一次函数的知识点总结03-19

高中数学基本的知识点总结09-28

红楼梦基本知识点总结09-07

初一数学基本知识点总结03-28

高中数学的基本知识点总结07-19

初一数学基本知识点总结06-06

算法基本逻辑结构精选知识点10-07

易经入门的基本知识点11-07