九年级数学学习方法

时间:2025-09-05 13:46:01 晶敏 学习方法 我要投稿
  • 相关推荐

九年级数学学习方法

  在学习、工作乃至生活中,大家总是需要不断学习的,不过只有真正找对了学习方法,才能能事半功倍,还能培养学习的兴趣。那么,都有哪些实用的学习方法呢?下面是小编精心整理的九年级数学学习方法,希望对大家有所帮助。

九年级数学学习方法

  九年级数学学习方法

  数学被誉为科学的皇后,在中考中数学成绩的好坏往往是成功与否的关键因素。

  想要学好初中数学首先要过的是心理关。任何事情都有一个由量变到质变的循序渐进的积累过程。刚刚进入初一的同学经常会感到刻苦努力学习了一阵,收效甚微,便垂头丧气,认为自己天生不是学数学的料;或者由于一次考试的失败,丧失了对数学的信心。这些都是初中数学学习的弊端,学数学要有决心,信心,更要有一套适合自己的有效学习方法。

  学习数学应该按照五个步骤进行:

  一预习

  对于理科学习,预习是必不可少的。我们在预习中,应该把书上的内容看一遍,尽力去理解,对解决不了的问题适当作出标记,请教老师或课上听讲解决,并试着做一做书后的习题检验预习效果。

  二听讲

  这一环节最为重要,因为老师把知识的精华都浓缩在课堂上,听数学课时应做到抓住老师讲题的思路,方法。有问题记下来,课下整理,解决,数学课上一定要积极思考,跟着老师的思路走。

  三复习

  体会老师课上的例题,整理思维,想想自己是怎么想的,与老师的思路有何异同,想想每一道题的考点,并试着一题多解,做到举一反三。

  四作业

  认真完成老师留的习题,适当挑选一些课外习题作为练习,但切忌一味追求偏题,怪题,更不要打“题海战术”。

  五总结

  这一步是为了更好的掌握所学知识。在学完一段知识或做了一道典型题后可总结:总结专题的数学知识;总结自己卡壳的地方;总结自己是怎么错的,错在哪里,总结题目的“陷阱”设在哪里及总结自己或他人的想法。

  九年级数学学习方法

  1.突出一个“勤”字(克服一个“惰”字)

  数学家华罗庚曾经说过:“聪明在于学习,天才在于勤奋”

  “勤能补拙是良训,一分辛劳一分才:

  我们在学习的时候要突出一个勤字,克服一个“懒”字,怎么突出“勤”字

  “聪”:怎么个勤法,从这个字面上来看,要做到五勤:“耳勤”“眼勤”(耳朵听,眼睛看,接受信息)

  “口勤”(讨论,回答问题,而不是讲话,消化信息)“脑勤”(善于思考问题,积极思考问题——吸收、储存信息)那是不是做到以上四点就行了呢?不是。这个字还有缺陷,在聪下面加上“手”

  “手勤”(动手多实践,不仅光做题,做课件,做模型)

  这样的人聪明不聪明?

  最大的提高学习效率,首先要做到—— 上课认真听讲(这是根本)回家先复习再做题如果课听不好,就别想消化知识

  2.学好初中数学还有两个要点,要狠抓两个要点:

  学好数学,一要(动手),二要(动脑)。

  动脑就是要学会观察分析问题,学会思考,不要拿到题就做,找到已知和未知想象之间有什么联系,多问几个为什么

  动手就是多实践,多做题,要“拳不离手”(武术)“曲不离口”(唱歌)

  同学就是“题不离手”,这两个要点大家要记住。

  “动脑又动手,才能最大地发挥大脑的效率”

  3.做到“三个一遍”

  大家听过“失败是成功之母”听过“重复是学习之母”吗?

  培根(18-19世纪英国的哲学家)——“知识就是力量”

  “重复是学习之母”

  如何重复,我给你们解释一下:

  “上课要认真听一遍,动手推一遍,想一遍”

  “下课 看 ”

  “考试前 ”

  4.重视“四个依据”

  读好一本教科书——它是教学、中考的主要依据;

  记好一本笔记 ——它是教师多年经验的结晶;

  做好做净一本习题集——它是使知识拓宽;

  记好一本心得笔记,最好每人自己准备一本错题集

  分课前、课上、课后三个方面来谈一谈数学的学习。

  1.课前做什么,预习。有的同学会认为预习是浪费时间,上课听老师讲讲不就可以了,为什么还要花时间预习。其实预习非但不浪费时间,而且有很大的益处。首先,预习是对自己自学能力的锻炼。老师不可能教给你全部的知识,很多的知识都是靠自己自学得到的,这就需要我们有良好的自学能力。其次,通过自己预习得到的要比通过上课听老师讲得到的印象要深刻的多。

  那该如何预习,预习些什么内容呢?第一,要看课本,看课本上的基本概念和基本例题,对这部分内容要做到理解。因为这就是基础,万变不离其宗,后面的任何变化都离不开这个基础。第二,在理解基本概念的基础上完成课后的随堂练习。因为通过什么来检测你是否理解了概念,只有通过题目。课后的随堂练习的设置就是理解基本概念后的简单的运用。如果预习的过程中有不懂的地方,要在书上做好记号,上课时就要着重听这部分内容;如果内容简单,自己能理解,那上课时就要听老师是如何讲解的,和自己对照一下,看看自己的理解是否正确,或者看看有没有其他的解题思路

  2.课上做什么,认真听讲。听课是学习中最重要的环节,是准确的掌握所学知识的关键。课上认真听十分钟胜过课后自己看书三十分钟。那么上课该如何认真听讲,听什么。第一、带着在预习中未懂的问题听课,注意力集中,尽可能把疑点在课中解决。

  第二,对于在预习中认为弄懂了的问题,主要听老师的讲解是否和自己的理解一致,纠正自己在预习中对一些知识的片面理解或错误理解。

  第三,在预习中没有弄懂的问题,通过老师讲懂了或还有疑问,要在课堂上把关键的地方记下来,课后要及时进行向老师请教,弄懂、弄明白。

  第四,在听课中注意不能只听问题的答案,关键是听老师讲解例题的解题思路,明白了解题思路,你是学会了做这一类题,而不是只是一道题。

  例题是为巩固数学知识而讲,例题的作用是举一反三。有人做过这样一个实验:

  一个老师带着一个初一班,他每周都测验他的学生,而且公开告诉他的学生,考题全部他上课讲的例题。学生开始一片哗然,90%的学生有信心拿满分,只有班上几个最差的学生不敢这么说,很快第一次测验结果出来了,及格率48%,满分率不到8%,第二次情况有所好转,初一时这个班数学成绩与同年级数学特长班平均分相差12.5分。初二时与数学班只差1.5分,比年级平均分高10分。初三毕业,这个班几乎与数学特长班没有区别。

  第五,注意听老师在课堂中补充的例题,这些例题通常具有代表性,听老师的解题思路,拓宽自己的知识,要学会自己可以动手解决这一类问题。

  3.课后该怎么做,完成练习和作业。要学好数学,必须多做练习,但并不是题海战术。只顾看书,而不做或少做练习,是不可能学好数学的。而一味的做题,而不顾解题方法,也是很难在学习上收到成效的。

  做练习要在有充分的准备之后,认真独立地完成。所谓有充分准备,就是要先复习今天所学的知识和老师补充的例题,把课本上的知识弄懂之后才能做练习。如果课本知识还有不懂之处,应先复习课文,询问同学或老师,直至懂了之后再做练习。

  所谓认真,是指对每个习题都要认真思考,对问题的每个细节都应思考清楚。注意养成一个全面细致地思考问题的习惯。这种良好习惯一旦养成,它会在你的一生中大有益处。另一方面,要认真演算,注意解答表述的条理性和解题格式的规范性。许多同学常常在考试中马虎出错,究其根源,必然形成马马虎虎的坏习惯。而“马虎”会长久地带来危害,这种坏习惯一旦养成,十分顽固,很难克服。

  所谓独立完成作业,就是要靠自己的能力完成作业。因为做练习的目的,一是巩固所学知识,二是检查对知识的理解是否正确,培养和提高分析解决问题的能力。

  要敢于啃难题。遇到难题一定要反复仔细推敲条件,深入思考,在山穷水尽、自己能力确实承受不了的情况下,问问别人是可以的,不要一觉得难,就不想做了。当然,做难题要耗费较长的时间。有些同学以为这样做不合算,不如问问省事,这种想法是不全面的。其实,帐得算两笔,比如你由于解难题耗费的时间较长联想过很多知识,设想了很多解法,都失败了,似乎收获是“零”,但事实上,你获得了大量的“副产品”,而这“副产品“的价值会远远大于本题目的价值。因为,由于解题的迫切需要联想了很多知识,恰好是对这许许多多知识积极的复习;你想出了很多方法,虽然没有能解决这个题目,但它是很好的思维训练,对提高思维能力起到了不可低估的作用,况且这一个个方法很可能在解决其他题目上奏效。大数学家希尔伯特把“费尔马大定理”这道难题叫做“能下金蛋的母鸡”。正是因为有很多数学家在攻克“费尔马大定理”的失败中,发现和开创了许多新的数学领域,大大地推进了数学的发展。

  4.复习与总结。复习是为了巩固,和遗忘做斗争;总结是为了条理知识,发现、掌握规律,积累经验,有所提高。

  学完每一章,要及时做好阶段复习。阶段复习要围绕每一节知识的重点、难点,阅读教材、听课笔记、练习本,从中提炼出本章的知识重点和难点,特别对于曾不大懂和理解错误或不够深度的地方,要着重复习巩固。凡是在作业或测验中不会做或做错了的题目,在阶段复习中要独立做一遍,检查一下对这些题目自己是否已经掌握。有些同学多次在某一类问题上出现错误,或曾不会做的题目,再考时仍不会做,正是没有完成复习任务的结果。较难的知识与题日,不仅难做、难理解,而且很容易忘。反复复习的本身,则是与遗忘作斗争的有效方法。阶段总结是十分必要的,通过阶段复习,应该有较大的提高。华罗庚有句名言:“读书要由薄到厚,再由厚到薄”。阶段总结,正是要完成由厚到薄的过程。总结要提炼出每一章知识的重点、难点,每一小节知识的重点与本章知识重点的联系,做出条理性的归纳和概括,从而积累解题经验,提高分析解题的能力。

  5.课外自学与研究。课外自学与研究的目的是扩大知识面,开阔眼界,掌握与积累思维方法和解题方法,进一步提高分析解题能力。围绕所学的教材进度看一些课外参考书及数学杂志,作一些较新鲜或难度较大的习题。课外自学应该是有计划地有节制地进行,不要影响以上环节的学习,更不要影响其它学科的学习。在课外自学的过程中,发现一些新颖而有价值的习题、一些好地思维方法与解题方法,应该记下来,以便进一步学习掌握。

  爱因斯坦说过:“成功==艰苦的劳动+正确的方法+少说空话”。对于渴望成功的同学来说,艰苦的劳动与少说空话是比较容易做到的,而正确的方法却不是每个人都能摸索得出来的。……学习方法因人而异,望大家,“择其善者而从之,其不善者而改之”。务使你拥有一套适合自己的学习方法。

  学好初中数学方法

  1、课内重视听讲,课后及时复习。

  新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

  2、适当多做题,养成良好的解题习惯。

  要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

  3、调整心态,正确对待考试。

  首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

  注意事项

  在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

  比较实用的初中数学学习方法

  初中,真的不是孩子一个人的战斗,老师、家长,甚至孩子的竞争对手,都是陪伴孩子不断前行的伙伴,这里谈一谈数学学习的方法,希望对于同学们学习数学有所帮助。

  1、按部就班,环环相扣。

  学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题,如果有任何疑问一定要及时的跟老师沟通,不要不好意思打扰老师,其实我作为数学老师挺喜欢爱问爱动脑的学生。就比如咱们以前学的好多个几何模型,如果你其中哪一个模型掌握的不熟练,做题做的不到位,那在做全等综合习题的时候,就根本看不出考的是什么模型。所以,一定要把每一个环节都学牢,如果你现在哪块还不熟练,自己赶紧课下再搞明白。

  2、概念记清,基础夯实。

  数学≠做题,千万不要忽视最基本的概念、公理、定理和公式,特别是在判断对错的选择题里,就要靠清晰的概念来明辨对错,如果概念不清就会感觉模棱两可,最终造成误选。因此,每新学一个定理或者定义的时候,都要在理解的基础上去深挖每一个字眼,有时候少说一两个字,都可能导致结果的不同。要在刚开始学概念的时候就弄清楚,通过读一读、抄一抄加深印象,特别是容易混淆的概念更要彻底搞清,不留隐患。就比如角平线的定义当中,如果说把角平均分成两个相等的角的射线,叫做这个角的角平分线,这么说错。缺了什么?

  3、适当做题,巧做为主。

  学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉中考的题型,训练要做到有的放矢。有的同学埋头题海苦苦挣扎,辅导书做掉一大堆却鲜有提高,这就是陷入了做题的误区。数学需要实践,需要大量做题,但要“埋下头去做题,抬起头来想题”,在做题中关注思路、方法、技巧,要“苦做”更要“巧做”.考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。最近我发现学生几乎不做讲义后面的复习巩固,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将上课讲的内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分。多做题,做好题,绝对是提升数学成绩最有效的方法之一。当然,在做题中要注重前后联系,纵横贯通,发现题与题之间的内在联系,绝不能“傻做”.在做一道与以前相似的题目时,要会通过比较,发现规律,穿透实质,以达到“触类旁通”的境界。特别是几何题中的辅助线添法很有规律性,在做题中要特别记牢。

  4、记录错题,避免再犯。

  俗话说,“一朝被蛇咬,十年怕井绳”,可是同学们常会一次又一次地掉入相似甚至相同的“陷阱”里,因此,我建议大家在平时的做题中就要及时记录错题,更重要的是还要想一想为什么会错、以后要特别注意哪些地方,这样就能避免不必要的失分。毕竟,中考或者在平时考试当中是“分分必争”,一分也失不得。这样复习时,这个错题本也就成了宝贵的复习资料。

  5、集中兵力,攻下弱点。

  每个人都有自己的“软肋”,如果试题中涉及到你的薄弱环节,一定会成为你的最痛。因此一定要通过短时间的专题学习,集中优势兵力,打一场漂亮的歼灭战,避免变成“瘸腿”.比如说有的同学感觉几何体难,没有思路,不会连辅助线,那这样的话就赶紧集中火力攻击几何,新初二暑假开始就要进入代数的部分了,几何可能会放一小段时间,正好几何不好的同学可以利用这段时间去多做几何题,可以做一做学而思之前发的全等三角形汇编题,遇到不懂的可以跟老师沟通。这样,代数和几何都可以得到全面发展。

  学习要做到五要、五先、五会、五心、六到!

  五要:

  1、围绕老师讲述展开联想;

  2、理清教材文字叙述思路;

  3、听出教师讲述的重点难点;

  4、跨越听课的学习障碍,不受干扰;

  5、在理解基础上扼要笔记。

  五先:

  1、先预习后听课;

  2、先尝试回忆后看书;

  3、先看书后做作业;

  4、先理解后记忆;

  5、先知识整理后入眠。

  五会:

  1、会制定学习计划;

  2、会利用时间充分学习;

  3、会进行学习小结;

  4、会提出问题讨论学习;

  5、会阅读参考资料扩展学习。

  五心:

  1、开始学习有决心;

  2、碰到困难有信心;

  3、研究问题有专心;

  4、反复学习有耐心;

  5、向别人学习要虚心。

  六到:

  心到:开动脑筋,积极思维;

  眼到:勤看,多方面增加感性知识;

  口到:勤问、勤背诵,熟记一些必需知识;

  耳到:要勤听,发挥听觉容量的最大潜力;

  手到:要勤写,抄写、记录是读书关键;

  足到:要勤跑,实地考察或请教别人。

  一关于数学方法

  目前对数学方法的几种说法:(1)数学方法是人们从事数学活动时使用的方法。(2)数学方法不仅指数学的研究方法(包括思想方法),而且也应当包括数学的学习方法和教学方法。(3)科学方法论中所谓的“数学方法”主要是指应用数学去解决实际问题。

  所谓方法是指“关于解决思想、说话、行动等问题的门路、程序等”,简言之,方法是解决问题的门路、程序等。毫无疑问,数学方法应是解决数学问题的门路程序,或是解决数学问题的方法,然而这只是数学方法概念外延的一个方面,由于用数学去解决实际问题也需要有一定的门路与程序,所以教学方法这一概念外延的另一个方面是用数学去解决实际问题的方法。用数学去解决实际问题关键是对实际问题建立相应数学模型,因此,也可称这样的数学方法为数学模型法。

  二关于数学思想

  数学思想这一概念是一个新概念,流行只不过是近10年左右的事,由于时间短,人们对这一概念的认识还很肤浅,甚至很多人只是将其当做一个“原始概念”对待,并没有真正说出什么是数学思想,而只是当“已知”用了。

  目前对数学思想有以下几种说法:(1)一名优秀的数学教师要善于发现课本知识内容背后所隐含的“软件”部分——数学思想。(2)中小学数学中反映的基本数学思想包括“集合、关系、数学结构、同构、代数运算”等。(3)数学思想是人们对数学科学研究的本质及规律的深刻认识。

  数学思想是数学的存在,反映在人的头脑中,经过思维活动后产生的结果。显而易见,数学思想作为思维结果,没有文字对它进行描述,它完全靠数学工作者对客观存在的数学认真思维活动后挖掘出来,数学思想是数学内容与数学方法等的升华与结晶,应特别指出,一旦形成了数学思想,其意义便远远超出了数学学科。数学思想对其他学科相关问题同样有指导意义。

  现在已被大家认可并经常用到的数学思想很多,如化归的数学思想,即将一个不易解决的问题转化归纳为易解决或已解决的问题来解决的思想,数学中用化归思想解决问题的例子有很多,如:当一元一次方程解法已知后,我们便可将二元一次方程组通过加减消元或代入消元将其归结为一元一次方程来求得解;当矩形面积会求后,我们便可以用割补法将平行四边形化为与之等积的矩形,从而求得平行四边形的面积……化归思想是数学家与其他科学家在思维方式上的最大区别之一。另外,分析与综合、类比等数学思想也早都被大家承认并运用。

  另外,数学思想还有以下教育功能:(1)数学思想让人终身受益。一位著名数学家在谈自己学习数学的心得时这样说过:“有许多具体的教学知识学过之后是可以忘掉的,但是那些知识所表现的数学思想是永远不能忘掉的,而且会使你受用一生。”作为社会中的人,在接受教学教育的全过程中,要学习许许多多的数学知识,这不是因为他将来真要用那些硬件知识去解决具体的数学问题,而是因为他们无一例外地需要吸取数学知识中蕴含的数学思想,这些数学思想在科学思想方法方面给人以启迪,同时也培养了人们的科学态度与科学习惯,目的明确、思维清晰、行为准确是各行各业的社会人都不可缺少的。(2)数学思想激励学习者的科学创造精神。每一种数学思想都是撼人心灵的智力奋斗的结晶,它的形成过程,充满了无数人的创造性思维,标志着一个继承历史并突破历史的跃进,体现了一个源于实践又高于实践的升华,数学思想内蕴含的科学创造精神,创造者拼搏不已的奋斗精神定会激励学习者的科学热情,并鼓舞他们带着创造精神去从事各种事业。(3)数学思想促使学习者推广高新科学技术。数学知识中蕴含的数学思想,会使学习者获得并迅速理解,或领悟各项高新科学技术的内容及内容产生的背景及使用前途,从而在推广和运用高新技术潮流中占据上风。

  三数学方法与数学思想的关系

  综上所述,数学方法与数学思想是两个完全不同的概念,它们既有区别又有联系。区别在于:数学方法是解决数学问题的方法,或用数学去解决实际问题的方法,而数学思想是数学反映在人的头脑中经思维后产生的结果。数学方法需要人们去探究,而数学思想需要人们去挖掘。联系在于:数学方法是数学思想产生的基础,数学思想是数学方法的深层表现形式。

  四中学数学教学改革的关键是应重视数学思想的教学

  中学数学教学改革面临诸多问题。“讲什么”是首当其冲的问题,再像以前那样按部就班地仅讲书本上知识已不能适应素质教育的要求。要使中学数学课讲得深刻,就必须注重数学思想的教学,要使学生在学习数学知识的同时学到深邃的科学思维思想,就必须注重数学思想的教学,这已从前面关于数学思想的论述中看得十分清楚。中学数学教师充分认识数学思想的教育功能,在讲清、讲活数学知识、数学方法的同时讲清数学思想。只有注重了教学思想的教学,我们的数学教学才会进入一个更高的层次,我们的学生才不仅仅学到了硬件——数学知识,还学到了软件——数学思想,学到了解决处理问题的能力,更广义地说,学到如何做人的根本思想。

【九年级数学学习方法】相关文章:

数学的学习方法10-14

数学学习方法07-24

[优秀]数学的学习方法07-01

数学高效学习方法05-26

数学学习方法05-26

(优秀)数学的学习方法06-16

总结数学学习方法05-17

初中数学学习方法05-30

小学数学学习方法09-28

总结数学学习方法05-17