初中数学知识点总结
总结是事后对某一阶段的学习或工作情况作加以回顾检查并分析评价的书面材料,它可以使我们更有效率,让我们来为自己写一份总结吧。总结怎么写才不会流于形式呢?下面是小编帮大家整理的初中数学知识点总结,希望能够帮助到大家。
初中数学知识点总结1
三角形两边:
定理三角形两边的和大于第三边。
推论三角形两边的差小于第三边。
三角形中位线定理:
三角形的中位线平行于第三边,并且等于它的一半。
三角形的重心:
三角形的重心到顶点的距离是它到对边中点距离的2倍。
在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线,三角形的三条中线交于一点,这一点叫做“三角形的重心”。
与三角形有关的角:
1、三角形的内角和定理:三角形的内角和为180°,与三角形的形状无关。
2、直角三角形两个锐角的关系:直角三角形的两个锐角互余(相加为90°)。有两个角互余的三角形是直角三角形。
3、三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角之和;三角形的一个外角大于与它不相邻的任何一个内角;三角形三个外角和为360°。
全等三角形的性质和判定:
全等三角形共有5种判定方式:SSS、SAS、ASA、AAS、HL。特殊情况下平移、旋转、对折也会构成全等三角形。
(边边边),即三边对应相等的两个三角形全等。
(边角边),即三角形的其中两条边对应相等,且两条边的夹角也对应相等的两个三角形全等。
(角边角),即三角形的其中两个角对应相等,且两个角夹的的边也对应相等的两个三角形全等。
(角角边),即三角形的其中两个角对应相等,且对应相等的角所对应的边也对应相等的两个三角形全等。
(斜边、直角边),即在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等。
等边三角形的判定:
1、三边相等的三角形是等边三角形(定义)。
2、三个内角都相等的三角形是等边三角形。
3、有一个角是60度的等腰三角形是等边三角形。
4、有两个角等于60度的三角形是等边三角形。
初中数学知识点总结2
一、正数和负数
1、正数和负数的概念
负数:比0小的数正数:比0大的数0既不是正数,也不是负数
注意:①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,—a就不能做出简单判断)
②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。
2、具有相反意义的量
若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:
零上8℃表示为:+8℃;零下8℃表示为:—8℃
支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。 3.0表示的意义
⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;
⑵0是正数和负数的分界线,0既不是正数,也不是负数。
二、有理数
1、有理数的概念
⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)
⑵正分数和负分数统称为分数
⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8?也是偶数,—1,—3,—5?也是奇数。
2、(1)凡能写成q(p,q为整数且p?0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负p
分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;?不是有理数;
初中数学知识点总结3
定义
对应角相等,对应边成比例的两个三角形叫做相似三角形
比值与比的概念
比值是一个具体的数字如:AB/EF=2
而比不是一个具体的数字如:AB/EF=2:1判定方法
证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。
方法一(预备定理)
平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)
方法二
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
方法三
如果两个三角形的两组对应边成比例,并且相应的夹角相等,
那么这两个三角形相似
方法四
如果两个三角形的三组对应边成比例,那么这两个三角形相似
方法五(定义)
对应角相等,对应边成比例的两个三角形叫做相似三角形
三个基本型
Z型A型反A型
方法六
两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。一定相似的三角形
1、两个全等的三角形
(全等三角形是特殊的相似三角形,相似比为1:1)
2、两个等腰三角形
(两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。)
3、两个等边三角形
(两个等边三角形,三角都是60度,且边边相等,所以相似)
4、直角三角形中由斜边的高形成的三个三角形(母子三角形)
图形的学习需要大家对于知识的详细了解和渗透,而不是一带而过。
初中数学知识点总结4
一次函数:
一次函数图像与性质是中考必考的内容之一。中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。甚至有存在探究题目出现。
主要考察内容:
①会画一次函数的图像,并掌握其性质。
②会根据已知条件,利用待定系数法确定一次函数的解析式。
③能用一次函数解决实际问题。
④考察一ic函数与二元一次方程组,一元一次不等式的关系。
突破方法:
①正确理解掌握一次函数的概念,图像和性质。
②运用数学结合的思想解与一次函数图像有关的问题。
③掌握用待定系数法球一次函数解析式。
④做一些综合题的训练,提高分析问题的能力。
函数性质:
1.y的变化值与对应的x的变化值成正比例,比值为k.即:y=kx+b(k,b为常数,k≠0),∵当x增加m,k(x+m)+b=y+km,km/m=k。
2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。
3当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。
4.在两个一次函数表达式中:
当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。若两个变量x,y间的关系式可以表示成Y=KX+b(k,b为常数,k不等于0)则称y是x的一次函数图像性质
作法与图形:通过如下3个步骤:
(1)列表.
(2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。
正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。(3)连线,可以作出一次函数的图象一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。(通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b).
性质:
(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。
函数不是数,它是指某一变化过程中两个变量之间的关系。
k,b与函数图像所在象限:
y=kx时(即b等于0,y与x成正比例):
当k>0时,直线必通过第一、三象限,y随x的增大而增大;当k0,b>0,这时此函数的图象经过第一、二、三象限;当k>0,b
初中数学知识点总结5
圆心角
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
推理过程
根据旋转的性质,将∠aob绕圆心o旋转到∠aob的位置时,显然∠aob=∠aob,射线oa与oa重合,ob与ob重合,而同圆的半径相等,oa=oa,ob=ob,从而点a与a重合,b与b重合。
因此,弧ab与弧ab重合,ab与ab重合。即
弧ab=弧ab,ab=ab。
则得到上面定理。
同样还可以得到:
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。
所以,在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等。
圆的圆心角知识要领很容易掌握,经常会出现在关于圆的证明题中。
初中数学知识点总结6
一.圆的定义
1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。
2.平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
二.圆心
1.定义1中的定点为圆心。
2.定义2中绕的那一端的端点为圆心。
3.圆任意两条对称轴的交点为圆心。
4.垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。
注:圆心一般用字母O表示
5.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
6.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。
7.圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。
8.圆的半径或直径决定圆的大小,圆心决定圆的位置。
三.圆的基本性质
1.圆的对称性
(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2.垂径定理
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:
平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3.圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4.在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5.夹在平行线间的两条弧相等。
(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角三角形的外心就是斜边的中点。)
6.直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。
四.圆和圆
1.两个圆没有公共点且每个圆的点都在另一个圆的外部时,叫做这两个圆的外离。
2.两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做两个圆的外切。
3.两个圆有两个交点,叫做两个圆的相交。
4.两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的内部,叫做两个圆的内切。
5.两个圆没有公共点且每个圆的点都在另一个圆的内部时,叫做这两个圆的内含。
五.正多边形和圆
1.正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。
2.正多边形与圆的关系:
(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。
(2)这个圆是这个正多边形的外接圆。
初中数学知识点总结7
动点与函数图象问题常见的四种类型:
1、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
2、四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
3、圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象.
4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象.
图形运动与函数图象问题常见的三种类型:
1、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.
2、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.
3、多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.
动点问题常见的四种类型:
1、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.
2、四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系.
3、圆中的动点问题:动点沿圆周运动,探究构成的新图形的边角等关系.
4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.
总结反思:
本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,一次函数的解析式,三角形全等的判定和性质,等腰直角三角形的性质,平行线的性质等,数形结合思想的应用是解题的关键.
解答动态性问题通常是对几何图形运动过程有一个完整、清晰的认识,发掘“动”与“静”的内在联系,寻求变化规律,从变中求不变,从而达到解题目的
解答函数的图象问题一般遵循的步骤:
1、根据自变量的取值范围对函数进行分段.
2、求出每段的解析式.
3、由每段的解析式确定每段图象的形状.
对于用图象描述分段函数的实际问题,要抓住以下几点:
1、自变量变化而函数值不变化的图象用水平线段表示.
2、自变量变化函数值也变化的增减变化情况.
3、函数图象的最低点和最高点.
初中数学知识点总结8
锐角三角函数定义
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin):对边比斜边,即sinA=a/c;
余弦(cos):邻边比斜边,即cosA=b/c;
正切(tan):对边比邻边,即tanA=a/b;
余切(cot):邻边比对边,即cotA=b/a;
正割(sec):斜边比邻边,即secA=c/b;
余割(csc):斜边比对边,即cscA=c/a。
三角函数关系
1、互余角的关系
sin(90°—α)=cosα,cos(90°—α)=sinα,tan(90°—α)=cotα,cot(90°—α)=tanα。
2、平方关系
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
3、积的关系
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
4、倒数关系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
两角和差公式
sin(A+B)= sinAcosB+cosAsinB
sin(A—B)= sinAcosB—cosAsinB
cos(A+B)= cosAcosB—sinAsinB
cos(A—B)= cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1—tanAtanB)
tan(A—B)=(tanA—tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB—1)/(cotB+cotA)
cot(A—B)=(cotAcotB+1)/(cotB—cotA)
1、不在同一直线上的三点确定一个圆。
2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧。
3、圆是以圆心为对称中心的中心对称图形。
4、圆是定点的距离等于定长的点的集合
5、圆的内部可以看作是圆心的距离小于半径的点的集合。
6、圆的外部可以看作是圆心的距离大于半径的点的集合。
7、同圆或等圆的半径相等。
8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
13、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
14、切线的性质定理圆的切线垂直于经过切点的半径。
15、推论1经过圆心且垂直于切线的直线必经过切点。
初中数学知识点总结9
初中数学数轴知识点
①通常用一条直线上的点表示数,这条直线叫数轴。
②数轴三要素:原点、正方向、单位长度。
③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
④只有符号不同的两个数叫做互为相反数(和为零)。(例:2的相反数是-2,如:2+(-2)=0;0的相反数是0)
⑤数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,数的绝对值是两点间的距离(无方向性,有两个点)。
⑥数轴上两点间的距离=|M?N|
⑥正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
⑦两个负数,绝对值大的反而小。
⑧|a|≥0(即非负性);绝对值等于一个正数的值有两个(两个互为相反数)如:|a|=5,a=5或a=-5
初中的数学知识点
(一)整式
1.整式:整式为单项式和多项式的统称。
2.整式加减
整式的加减运算时,如果遇到括号先去掉括号,再合并同类项。
(1)去括号:几个整式相加减,如果有括号就先去括号,然后再合并同类项。
如果括号外的因数是正数,去括号后原括号内的符号与原来相同。
如果括号外的因数是负数,去括号后原括号内的符号与原来相反。
(2)合并同类项:
合并同类项后,所得项的系数是合并前各项系数的和,且字母部分不变。
3.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
4.多项式:由若干个单项式相加组成的代数式叫做多项式。
5.同底数幂是指底数相同的幂。
6.同底数幂的乘法:同底数幂相乘,底数不变,指数相加
7.幂的乘方法则:幂的乘方,底数不变,指数相乘。
8.积的乘方:积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。
9.单项式与单项式相乘
单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
10.单项式与多项式相乘
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
11.多项式与多项式相乘
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
12.同底数幂的除法:同底数幂相除,底数不变,指数相减。
13.单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式中含有的字母,则连同它的指数一起作为商的一个因式。
14.多项式除以单项式:多项式除以单项式,先把多项式的每一项分别除以这个单项式,再把所得的商相加。
(二)相交线与平行线
(1)相交线
在同一平面内,两条直线的位置关系有相交和平行两种。如果两条直线只有一个公共点时,称这两条直线相交。
(2)垂线
当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。
(3)同位角
两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。
(4)内错角
两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角。
(5)同旁内角
两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。
(6)平行线
几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。
平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
(7)平移
平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
(三)概率
1.一般地,在大量重复试验中,如果事件A发生的频率n/m会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。
2.随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。
3.互斥事件:不可能同时发生的两个事件叫做互斥事件。
4.对立事件:即必有一个发生的互斥事件叫做对立事件。
5.必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。
6.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。
初中数学知识点总结
1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).
3.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1 ……(检验方程的解).
4.列一元一次方程解应用题:
(1)读题分析法:…………多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.
(2)画图分析法: …………多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.
11.列方程解应用题的常用公式:
(1)行程问题:距离=速度·时间;
(2)工程问题:工作量=工效·工时;
(3)比率问题:部分=全体·比率;
(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;
(5)商品价格问题:售价=定价·折·,利润=售价-成本,;
(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,
S正方形=a2,S环形=π(R2-r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥= πR2h.
初中数学知识点总结10
角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。
锐角:大于0°,小于90°的角叫做锐角。
直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
平角:等于180°的角叫做平角。
优角:大于180°小于360°叫优角。
劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。
周角:等于360°的角叫做周角。
负角:按照顺时针方向旋转而成的角叫做负角。
正角:逆时针旋转的角为正角。
0角:等于零度的角。
余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。
对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。
还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)!
该怎么提高数学课堂学习效率
课堂学习是学习过程中最基本,最重要的环节,要坚持做到“五到”即耳到、眼到、口到、心到、手到;
手到:就是以简单扼要的方法记下听课的要点,思维方法,以备复习、消化、再思考,但要以听课为主,记录为辅;
耳到:专心听讲,听老师如何讲课,如何分析、如何归纳总结.另外,还要听同学们的解答,看是否对自己有所启发,特别要注意听自己预习未看懂的问题;
口到:主动与老师、同学们进行合作、探究,敢于提出问题,并发表自己的看法,不要人云亦云;
眼到:就是一看老师讲课的表情,手势所表达的意思,看老师的演示实验、板书内容,二看老师要求看的课本内容,把书上知识与老师课堂讲的知识联系起来;
心到:就是课堂上要认真思考,注意理解课堂的新知识,课堂上的思考要主动积极.关键是理解并能融汇贯通,灵活使用.对于老师讲的新概念,应抓住关键字眼,变换角度去理解.
初中数学知识点总结11
一、实数
1.平方根性质:
(1)一个正数有两个平方根,它们互为相反数;
(2)零的平方根是零;
(3)负数没有平方根。
2.算术平方根性质:
(1)一个正数的正的平方根叫做它的算术平方根;
(2)零的算术平方根是零;
(3)负数没有算术平方根。
3.立方根性质:
(1)正数的立方根是正数;
(2)零的立方根是零;
(3)负数的立方根是负数。
4.实数的性质:
(1)零是唯一没有平方根的数;
(2)正数和负数可以没有算术平方根;
(3)任何实数的立方根只有唯一的一个;
(4)正数的立方根与它本身和零同类。
二、整式的运算
1.整式范围:
(1)整式可以化为分数或整数;
(2)整式可以化为负数或非负数;
(3)整式可以化为奇数或偶数;
(4)整式可以化简为分数指数幂。
2.单项式:
(1)单项式的系数是数字因数;
(2)一个单项式中所有字母的指数的和叫做单项式的次数。
3.多项式:
(1)多项式的每一项都是一个单项式;
(2)一个多项式的项数与多项式中含有几个单项式有关。
4.同底数幂的乘法:
(1)同底数幂相乘,底数不变,指数相加;
(2)同底数幂相除,底数不变,指数相减。
5.幂的乘方:
幂的乘方,底数不变,指数相乘。
6.积的乘方:
(1)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;
(2)1的乘方等于1。
7.同底数幂的除法:
(1)同底数幂相除,底数不变,指数相减;
(2)0的任何正整数次幂都是0。
8.分式:
(1)分式是整式的一种,在整式中区别于整式,分式的分母中必须含有字母;
(2)分式的值等于分子除以分母。
9.分式的运算:
(1)分式的乘方:分式与分式相乘,再把被乘式的分子、分母分别与乘式的分子、分母相乘,即分子相乘的积做积的分子,分母相乘的积做积的分母;
(2)分式的除法:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即分子相除的商做被除式的分子,分母相除的商做被除式的分母;
(3)分式的加减:异分母分式的加减运算,为了使不同分母的分数直接相加减不便,因此常把不同分母的分数分别化成与原来的分母相同的分母后再相加减。
三、方程与方程组
1.方程:
(1)含有未知数的等式叫方程;
(2)使方程左右两边相等的未知数的值,叫做方程的解;
(3)求方程的解的过程叫做解方程。
2.方程的解:
(1)能使方程左右两边相等的未知数的值;
(2)一个数(它不一定是数,也可以是符号和运算)是某一等式(含有未知数的等式)的解,那么这个数就叫做该等式的解。
3.一元一次方程:
(1)只有一个未知数;
(2)未知数的最高次数为1;
(3)整式方程。
4.方程的解法:
(1)去分母:在方程两端同乘各分母的最小公倍数;
(2)去括号:去括号要变号;
(3)移项:把含有未知数的项移到等号的一边,其他项移到另一边;
(4)合并同类项:化未知数为已知数;
(5)系数化成1:在方程两端同除以未知数的系数。
5.列方程解应用题
初中数学知识点总结12
第一章 有理数
一、有理数的分类
(1)按正负分,分为正有理数、零、负有理数;
(2)按整数和分数分,分为整数和分数;
二、有关概念
(1)相反数:代数意义和几何意义相结合,(2)绝对值:
(3)倒数
(4)数轴
三、有理数大小的比较
主要分为利用数轴比较和利用绝对值比较
四、有理数的运算
(1)运算法则
①加法法则
②减法法则
③乘法法则
④除法法则
⑤乘方法则
(2)运算律
① 交换律:a、加法交换律 a+b=b+a
b、乘法交换律 a×b=b×a
② 结合律:a、加法结合律 a+b+c=(a+b)+c
b、乘法结合律 a×c+b×c=(a+b)×c ③分配律: (a+b)×c=a×c+b×c
五、科学记数法的概念
六、近似数的概念
示例:
例1 某食品包装袋上标有“净含量386克 4克”,则这包食品的合格净含量范围是( )克——390克。
根据正数、负数的意义可知,这包食品的合格净含量范围是(386-4)克——(386+4)克,即382克——390克。
382
例2 (1)如果a与-2互为相反数,那么a等于( )
A、-2 B、2 C、- D、
根据相反数的特点,即“绝对值相等,符号相反”,可知-2的相反数为2.故正确答案为B。
(2)-5的绝对值是( )
A、5 B、-5 C、 D、-
有绝对值的概念可知,表示-5的点到原点的距离为5,故-5的绝对值为5。
(3)- 的倒数是( )
A、 B、 C、- D、-
根据倒数的定义知- 的倒数为1÷(- )=-
例3 比较大小:- 与-
这是两个负数比较大小,应先比较它们的绝对值的大小。
= = , = = 。
例4 计算:
有理数加减乘除混合运算顺序:先乘除,后加减,有括号应先算括号里的。
例5 我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人,将665 575 306用科学记数法表示(精确到百万位)约为( )
A、66.6×10 B、0.666×10 C、6.66×10 D、6.66×10
665 575 306=6.655 753 06×10 ≈6.66×10 故选C
C
例6用四舍五入法,按括号里的要求对下列各数取近似值。
(1)0.069 99(精确到千分位)
(2)826 750(精确到千位)
(3)28 736(精确到千位)
精确到个位以下的数,用四舍五入或科学记数法取近似数都可以;精确到个位以上的数,应用科学记数法取近似数,对于较大的数,应该用科学记数法或表示时在后面加一个表示数位的汉字。
(1)0.069 99≈0.070
(2)826 750≈8.27×10 或表示为82.7万
(3)28 736≈2.9×10 或表示为2.9万
第二章 整式的加减
一、整式
1、单项式:有数字或字母的积组成的代数式叫做单项式。单独的一个数或一个字母也是单
项式。如: ab, m , -x
单项式的系数是指单项式中的数字因数;单项式的次数是指单项式中所有字母的指数和。
2、多项式:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。在多项式中,不含字母的项叫做常数项。多项式中次数最高的项的次数,就是这个多项式的次数。多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式。
3、整式:单项式和多项式统称为整式。
二、整式的加减
1、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。所有的常数项都是同类项。
2、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
3、去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“—”,把括号和它前面的“—”号去掉后,原括号里各项的符号都要改变。
4、添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“—”,括号内各项的符号都要改变。
5、整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项。
※ 正式加减的一般步骤:
(1)如果有括号,那么先去括号;
(2)如果有同类项,那么先去括号;
(3)易错音难点:
a、确定单项式的系数时,应先把单项式写成数字因数与字母因数的积的形式,再确定。 b、多项式的项应包括它前面的符号,多项式的次数是多项式中次数最高项的次数,而不是所有项的次数之和。
c、判断两项是否为同类项时,不仅要看两项所含字母是否相同,还要看相同字母的指数是否相同,与所含字母的顺序无关。
d、合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变。 e、去括号时,如果括号前面是“—”,那么括号里各项都应变号;如果括号前有数字因数,那么应把数字因数乘到括号里,再去括号。
f、整式相加减时应加括号,把整式括起来,再加减。
初中数学知识点总结13
一次函数的图象与性质的口诀:
一次函数是直线,图象经过三象限;
正比例函数更简单,经过原点一直线;
两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;
k为负来左下展,变化规律正相反;
k的绝对值越大,线离横轴就越远。
一次函数的解题方法
理解一次函数和其它知识的联系
一次函数和代数式以及方程有着密不可分的联系。如一次函数和正比例函数仍然是函数,同时,等号的两边又都是代数式。需要注意的是,与一般代数式有很大区别。首先,一次函数和正比例函数都只能存在两个变量,而代数式可以是多个变量;其次,一次函数中的变量指数只能是1,而代数式中变量指数还可以是1以外的数。另外,一次函数解析式也可以理解为二元一次方程。
掌握一次函数的解析式的特征
一次函数解析式的结构特征:kx+b是关于x的一次二项式,其中常数b可以是任意实数,一次项系数k必须是非零数,k≠0,因为当k = 0时,y = b(b是常数),由于没有一次项,这样的函数不是一次函数;而当b = 0,k≠0,y = kx既是正比例函数,也是一次函数。
应用一次函数解决实际问题
1、分清哪些是已知量,哪些是未知量,尤其要弄清哪两种量是相关联的量,且其中一种量因另一种量的变化而变化;
2、找出具有相关联的两种量的等量关系之后,明确哪种量是另一种量的函数;
3、在实际问题中,一般存在着三种量,如距离、时间、速度等等,在这三种量中,当且仅当其中一种量时间(或速度)不变时,距离与速度(或时间)才成正比例,也就是说,距离(s)是时间(t)或速度( )的正比例函数;
4、求一次函数与正比例函数的关系式,一般采取待定系数法。
数形结合
方程,不等式,不等式组,方程组我们都可以用一次函数的观点来理解。一元一次不等式实际上就看两条直线上下方的关系,求出端点后可以很容易把握解集,至于一元一次方程可以把左右两边看为两条直线来认识,直线交点的横坐标就是方程的解,至于二元一次方程组就是对应2条直线,方程组的解就是直线的交点,结合图形可以认识两直线的位置关系也可以把握交点个数。
如果一个交点时候两条直线的k不同,如果无穷个交点就是k,b都一样,如果平行无交点就是k相同,b不一样。至于函数平移的问题可以化归为对应点平移。k反正不变然后用待定系数法得到平移后的方程。这就是化一般为特殊的解题方法。
数学解题方法分别有哪些
1、配方法
所谓的公式是使用变换解析方程的同构方法,并将其中的一些分配给一个或多个多项式正整数幂的和形式。通过配方解决数学问题的公式。其中,用的最多的是配成完全平方式。匹配方法是数学中不断变形的重要方法,其应用非常广泛,在分解,简化根,它通常用于求解方程,证明方程和不等式,找到函数的极值和解析表达式。
2、因式分解法
因式分解是将多项式转换为几个积分产品的乘积。分解是恒定变形的基础。除了引入中学教科书中介绍的公因子法,公式法,群体分解法,交叉乘法法等外,还有很多方法可以进行因式分解。还有一些项目,如拆除物品的使用,根分解,替换,未确定的系数等等。
3、换元法
替代方法是数学中一个非常重要和广泛使用的解决问题的方法。我们通常称未知或变元。用新的参数替换原始公式的一部分或重新构建原始公式可以更简单,更容易解决。
4、判别式法与韦达定理
一元二次方程 ax2+ bx+ c=0( a、 b、 c属于 R, a≠0)根的判别, = b2-4 ac,不仅用来确定根的性质,还作为一个问题解决方法,代数变形,求解方程(组),求解不等式,研究函数,甚至几何以及三角函数都有非常广泛的应用。
韦达定理除了知道二次方程的根外,还找到另一根;考虑到两个数的和和乘积的简单应用并寻找这两个数,也可以找到根的对称函数并量化二次方程根的符号。求解对称方程并解决一些与二次曲线有关的问题等,具有非常广泛的应用。
5、待定系数法
在解决数学问题时,如果我们首先判断我们所寻找的结果具有一定的形式,其中包含某些未决的系数,然后根据问题的条件列出未确定系数的方程,最后找到未确定系数的值或这些待定系数之间的关系。为了解决数学问题,这种问题解决方法被称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解决问题时,我们通常通过分析条件和结论来使用这些方法来构建辅助元素。它可以是一个图表,一个方程(组),一个方程,一个函数,一个等价的命题等,架起连接条件和结论的桥梁。为了解决这个问题,这种解决问题的数学方法,我们称之为构造方法。运用结构方法解决问题可以使代数,三角形,几何等数学知识相互渗透,有助于解决问题。
初中数学知识点总结14
一、初中数学基本概念
1.方程:含有未知数的等式叫做方程。
2.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
3.二元一次方程:含有两个未知数,并且未知数的次数是1的二元一次方程。
4.二元一次方程组:由两个二元一次方程组成的方程组。
5.一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程。
6.一元二次方程的解:使一元二次方程左右两边相等的未知数的值。
7.一元二次方程的根:一元二次方程的解。
8.一元二次方程的判别式:当a是正数时,如果一元二次方程左右两边相等时,那么这个一元二次方程有两个不相等的实数根;当a是负数时,如果一元二次方程左右两边相等时,那么这个一元二次方程没有实数根;当a是零时,如果一元二次方程左右两边相等时,那么这个一元二次方程有两个相等的实数根。
9.函数:在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫做自变量。
10.一次函数:在某个变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的一次函数。
11.正比例函数:在某个变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,并且这个数值在比例上成正比,那么称y是x的比例函数。
12.反比例函数:在某个变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,并且这个数值在比例上成反比,那么称y是x的反比例函数。
13.平行四边形:在同一个平面内两组对角分别平行的四边形叫做平行四边形。
14.矩形:有一个内角是直角的平行四边形叫做矩形。
15.菱形:有两组邻边相等的平行四边形叫做菱形。
16.正方形:四边相等的矩形叫做正方形。
17.等腰梯形:两条腰相等的梯形叫做等腰梯形。
18.三角形:在同一个平面内由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
19.中线:连接一个顶点和它对边的中点的线段叫做中线。
20.高线:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做高线。
21.角平分线:三角形的一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做角平分线。
22.中位线:连接三角形两边中点的线段叫做中位线。
23.轴对称图形:一条物体沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。
24.直接开平方法:形如x2=p或者(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程的方法。
25.配方法:把一元二次方程的常数项移到方程的右边,两边加上一次项系数的一半的平方,再用右边的式子除以左边的式子,得到一个平方的形式,再用直接开平方的方法求解一元二次方程的方法。
26.公式法:用求根公式解一元二次方程的方法。
27.因式分解法:将一元二次方程分解成两个一次因式的积等于0的一元二次方程,然后将各个因式分解,得到一元一次方程,再用直接开方法求解一元一次方程的方法。
二、初中数学基本运算
1.整式:单项式和多项式的统称。
2.单项式:由数字和字母的积组成的代数式叫做单项式。单独的一个数字或字母也叫做单项式。
3.多项式:几个单项式的和叫做多项式。每个单项式叫做多项式的项。其中不含字母的项叫做常数
初中数学知识点总结15
一、数与代数
1.有理数
有理数:
①整数→正整数/0/负整数
②分数→正分数/负分数
数轴:
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
2.实数
无理数:无限不循环小数叫无理数
平方根:如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟);一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
算术平方根:正数的正的平方根和零的平方根统称为主根,用符号“√a”表示,a为“被开方数”。
立方根:如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根);一个正数的立方根是正数、零的立方根是零、负数的立方根是负数;
二、方程
1.代数式:单独一个数字或一个字母也是代数式。
2.一元一次方程:含有一个未知数,并且未知数的次数是1,并且含有一个未知数,并且未知数的次数是1的所有整式方程是一元一次方程。
3.一元二次方程:含有一个未知数,并且未知数的次数是2的所有整式方程是一元二次方程。
4.二元一次方程:含有两个未知数,并且含有一个未知数的次数是1的所有整式方程叫二元一次方程。
5.二元二次方程:含有两个未知数,并且含有一个未知数的次数是2的所有整式方程叫二元二次方程。
三、三角形
1.几何图形:学过的立体图形有圆柱、圆锥和球以及长方体、正方体、棱柱、棱锥、棱台。
2.图形的三视图:俯视图、主视图、左视图。
3.三角形的稳定性。
4.三角形的分类:锐角三角形、直角三角形、钝角三角形。
5.三角形的内角和定理:三角形三个内角的和等于180度。
6.解直角三角形:解直角三角形需要运用勾股定理及锐角三角函数的定义。锐角三角函数的定义:在直角三角形中,一锐角的正切等于锐角A对边与邻边的比值;一锐角的余切等于锐角A的邻边与对边的比值;一锐角的正弦等于锐角A的对边与斜边的比值;一锐角的余弦等于锐角A的邻边与斜边的比值。
7.全等三角形:全等三角形的对应边相等;全等三角形的对应角相等。
8.等腰三角形的性质定理:等腰三角形的两个底角相等;(简称:等边对等角)以及等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。(简称:三线合一)
9.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(简称:等角对等边)
10.等边三角形:三条边都相等的三角形是等腰三角形;三个角都相等的三角形是等边三角形。
11.相似的三角形:相似三角形的对应边成比例;对应角相等。
12.反证法:在证明一个命题的论证中,假设命题的结论不成立,从这个假设出发,经过推理论证,得出与定义、公理或已经证明过的命题或已经掌握的事实相矛盾,从而使这个假设成为一个不成立的命题,这种推证方法叫做反证法。证明两条线段相等时常常用反证法。
四、四边形
1.平行四边形及特殊平行四边形的重心:平行四边形及特殊平行四边形的重心是它的两条对角线的交点。
2.矩形、菱形、正方形的重心:矩形、菱形、正方形的重心是它们的对角线的交点。
3.梯形问题
初中数学知识点总结16
1、一元二次方程解法:
(1)配方法:(X±a)2=b(b≥0)注:二次项系数必须化为1
(2)公式法:aX2+bX+C=0(a≠0)确定a,b,c的值,计算b2-4ac≥0
若b2-4ac>0则有两个不相等的实根,若b2-4ac=0则有两个相等的实根,若b2-4ac<0则无解
若b2-4ac≥0则用公式X=-b±√b2-4ac/2a注:必须化为一般形式
(3)分解因式法
①提公因式法:ma+mb=0→m(a+b)=0
平方差公式:a2-b2=0→(a+b)(a-b)=0
②运用公式法:
完全平方公式:a2±2ab+b2=0→(a±b)2=0
③十字相乘法
2、锐角三角函数定义
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin):对边比斜边,即sinA=a/c;
余弦(cos):邻边比斜边,即cosA=b/c;
正切(tan):对边比邻边,即tanA=a/b;
余切(cot):邻边比对边,即cotA=b/a;
3、积的关系
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
4、倒数关系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
5、两角和差公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
【初中数学知识点总结】相关文章:
初中数学的知识点总结09-19
初中数学的知识点总结06-13
初中数学的知识点总结03-11
初中数学知识点总结03-07
初中数学知识点总结10-24
初中数学圆知识点总结10-17
初中数学必备知识点总结03-11
【精选】初中数学知识点总结06-10
初中数学知识点总结06-12
初中数学函数知识点总结04-12