高中数学知识点的总结

时间:2025-05-24 08:16:06 诗琳 知识点总结 我要投稿

高中数学知识点的总结

  总结是事后对某一阶段的学习或工作情况作加以回顾检查并分析评价的书面材料,通过它可以正确认识以往学习和工作中的优缺点,因此,让我们写一份总结吧。那么总结有什么格式呢?以下是小编帮大家整理的高中数学知识点总结 ,欢迎阅读与收藏。

高中数学知识点的总结

  高中数学知识点的总结 1

  1、你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。

  2、线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?

  3、三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见

  3、线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的`判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大。

  4、求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。

  5、异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。

  6、你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?

  7、两条异面直线所成的角的范围:0°《α≤90°

  直线与平面所成的角的范围:0o≤α≤90°

  二面角的平面角的取值范围:0°≤α≤180°

  8、你知道异面直线上两点间的距离公式如何运用吗?

  9、平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”。

  10、立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?

  11、棱柱及其性质、平行六面体与长方体及其性质。这些知识你掌握了吗?(注意运用向量的方法解题)

  12、球及其性质;经纬度定义易混。经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式。

  高中数学知识点的总结 2

  一、集合有关概念

  1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

  2、集合的中元素的三个特性:

  1)元素的确定性;

  2)元素的互异性;

  3)元素的无序性。

  说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

  (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

  (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

  (4)集合元素的三个特性使集合本身具有了确定性和整体性。

  3、集合的表示:{…}如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}

  1)用拉丁字母表示集合:A={我校的篮球队员}B={12345}。

  2)集合的表示方法:列举法与描述法。

  注意啊:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集N_或N+整数集Z有理数集Q实数集R

  关于“属于”的概念

  集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a:A。

  列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

  描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

  ①语言描述法:例:{不是直角三角形的三角形}

  ②数学式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

  4、集合的分类:

  1)有限集含有有限个元素的集合。

  2)无限集含有无限个元素的集合。

  3)空集不含任何元素的集合例:{x|x2=—5}。

  二、集合间的基本关系

  1、“包含”关系子集

  注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA。

  2、“相等”关系(5≥5,且5≤5,则5=5)

  实例:设A={x|x2—1=0}B={—11}“元素相同”

  结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B。

  ①任何一个集合是它本身的子集。AA

  ②真子集:如果A?B且A?B那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果ABBC那么AC

  ④如果AB同时BA那么A=B

  3、不含任何元素的.集合叫做空集,记为Φ。

  规定:空集是任何集合的子集,空集是任何非空集合的真子集。

  三、集合的运算

  1、交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集。

  记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}。

  2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}。

  3、交集与并集的性质:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A,A∪φ=AA∪B=B∪A。

  4、全集与补集

  (1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

  记作:CSA即CSA={x?x?S且x?A}。

  (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

  (3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U。

  高中数学知识点的总结 3

  高考数学导数知识点

  (一)导数第一定义

  设函数y = f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0 + △x也在该邻域内)时,相应地函数取得增量△y = f(x0 + △x)— f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y = f(x)在点x0处可导,并称这个极限值为函数y = f(x)在点x0处的导数记为f(x0),即导数第一定义

  (二)导数第二定义

  设函数y = f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x — x0也在该邻域内)时,相应地函数变化△y = f(x)— f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y = f(x)在点x0处可导,并称这个极限值为函数y = f(x)在点x0处的导数记为f(x0),即导数第二定义

  (三)导函数与导数

  如果函数y = f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y = f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y = f(x)的导函数,记作y,f(x),dy/dx,df(x)/dx。导函数简称导数。

  (四)单调性及其应用

  1。利用导数研究多项式函数单调性的一般步骤

  (1)求f¢(x)

  (2)确定f¢(x)在(a,b)内符号(3)若f¢(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f¢(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数

  2。用导数求多项式函数单调区间的一般步骤

  (1)求f¢(x)

  (2)f¢(x)>0的解集与定义域的交集的对应区间为增区间;f¢(x)<0的解集与定义域的交集的对应区间为减区间

  高中数学重难点知识点

  高中数学包含5本必修、2本选修,(理)包含5本必修、3本选修,每学期学习两本书。

  必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

  必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角

  这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22———27分

  2、直线方程:高考时不单独命题,易和圆锥曲线结合命题

  3、圆方程:

  必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分

  必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15———20分,并且经常和其他函数混合起来考查

  2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分

  必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17———22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

  高中数学知识点大全

  一、集合与简易逻辑

  1、集合的元素具有确定性、无序性和互异性。

  2、对集合,时,必须注意到“极端”情况:或;求集合的子集时是否注意到是任何集合的子集、是任何非空集合的真子集。

  3、判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”。

  4、“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”。

  5、四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”。

  原命题等价于逆否命题,但原命题与逆命题、否命题都不等价。反证法分为三步:假设、推矛、得果。

  6、充要条件

  二、函数

  1、指数式、对数式,

  2、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”。

  (2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个。

  (3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像。

  3、单调性和奇偶性

  (1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同。

  偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反。

  (2)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”。

  复合函数的奇偶性特点是:“内偶则偶,内奇同外”。复合函数要考虑定义域的变化。(即复合有意义)

  4、对称性与周期性(以下结论要消化吸收,不可强记)

  (1)函数与函数的图像关于直线(轴)对称。

  推广一:如果函数对于一切,都有成立,那么的图像关于直线(由“和的一半确定”)对称。

  推广二:函数,的图像关于直线对称。

  (2)函数与函数的图像关于直线(轴)对称。

  (3)函数与函数的图像关于坐标原点中心对称。

  三、数列

  1、数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前项和公式的关系

  2、等差数列中

  (1)等差数列公差的取值与等差数列的单调性。

  (2)也成等差数列。

  (3)两等差数列对应项和(差)组成的新数列仍成等差数列。

  (4)仍成等差数列。

  (5)“首正”的递等差数列中,前项和的最大值是所有非负项之和;“首负”的'递增等差数列中,前项和的最小值是所有非正项之和;

  (6)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定。若总项数为偶数,则“偶数项和“奇数项和=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和—偶数项和”=此数列的中项。

  (7)两数的等差中项惟一存在。在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解。

  (8)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式)。

  3、等比数列中:

  (1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性。

  (2)两等比数列对应项积(商)组成的新数列仍成等比数列。

  (3)“首大于1”的正值递减等比数列中,前项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前项积的最小值是所有小于或等于1的项的积;

  (4)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定。若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和“首项”加上“公比”与“偶数项和”积的和。

  (5)并非任何两数总有等比中项。仅当实数同号时,实数存在等比中项。对同号两实数的等比中项不仅存在,而且有一对。也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时)。在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解。

  (6)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式)。

  4、等差数列与等比数列的联系

  (1)如果数列成等差数列,那么数列(总有意义)必成等比数列。

  (2)如果数列成等比数列,那么数列必成等差数列。

  (3)如果数列既成等差数列又成等比数列,那么数列是非零常数数列;但数列是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件。

  (4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数。

  如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列。

  5、数列求和的常用方法:

  (1)公式法:①等差数列求和公式(三种形式),

  ②等比数列求和公式(三种形式),

  (2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和。

  (3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前和公式的推导方法)。

  (4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前和公式的推导方法之一)。

  (5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和

  (6)通项转换法。

  四、三角函数

  1、终边与终边相同(的终边在终边所在射线上)。

  终边与终边共线(的终边在终边所在直线上)。

  终边与终边关于轴对称

  终边与终边关于轴对称

  终边与终边关于原点对称

  一般地:终边与终边关于角的终边对称。

  与的终边关系由“两等分各象限、一二三四”确定。

  2、弧长公式:,扇形面积公式:1弧度(1rad)。

  3、三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正。

  4、三角函数线的特征是:正弦线“站在轴上(起点在轴上)”、余弦线“躺在轴上(起点是原点)”、正切线“站在点处(起点是)”。务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’‘纵坐标’、‘余弦’‘横坐标’、‘正切’‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与值的大小变化的关系为锐角

  5、三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;

  6、三角函数诱导公式的本质是:奇变偶不变,符号看象限。

  7、三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!

  角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换。

  8、三角函数性质、图像及其变换:

  (1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性

  注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变。既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定。如的周期都是,但的周期为,y=|tanx|的周期不变,问函数y=cos|x|,y=cos|x|是周期函数吗?

  (2)三角函数图像及其几何性质:

  (3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换。

  (4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法。

  9、三角形中的三角函数:

  (1)内角和定理:三角形三角和为,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余。锐角三角形三内角都是锐角三内角的余弦值为正值任两角和都是钝角任意两边的平方和大于第三边的平方。

  (2)正弦定理:(R为三角形外接圆的半径)。

  (3)余弦定理:常选用余弦定理鉴定三角形的类型。

  五、向量

  1、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征。

  2、几个概念:零向量、单位向量(与共线的单位向量是,平行(共线)向量(无传递性,是因为有)、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(在上的投影是)。

  3、两非零向量平行(共线)的充要条件

  4、平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数,使a= e1+ e2。

  5、三点共线;

  6、向量的数量积:

  六、不等式

  1、(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。

  (2)解分式不等式的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);

  (3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);

  (4)解含参不等式常分类等价转化,必要时需分类讨论。注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集。

  2、利用重要不等式以及变式等求函数的最值时,务必注意a,b(或a,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时)。

  3、常用不等式有:(根据目标不等式左右的运算结构选用)

  a、b、c R,(当且仅当时,取等号)

  4、比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法

  5、含绝对值不等式的性质:

  6、不等式的恒成立,能成立,恰成立等问题

  (1)恒成立问题

  若不等式在区间上恒成立,则等价于在区间上

  若不等式在区间上恒成立,则等价于在区间上

  (2)能成立问题

  (3)恰成立问题

  若不等式在区间上恰成立,则等价于不等式的解集为。

  若不等式在区间上恰成立,则等价于不等式的解集为,

  七、直线和圆

  1、直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义(或)及其直线方程的向量式((为直线的方向向量))。应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?

  2、知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点,常设其方程为。

  (2)直线在坐标轴上的截距可正、可负、也可为0。直线两截距相等直线的斜率为—1或直线过原点;直线两截距互为相反数直线的斜率为1或直线过原点;直线两截距绝对值相等直线的斜率为或直线过原点。

  (3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合。

  3、相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是

  4、线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解。

  5、圆的方程:最简方程;标准方程;

  6、解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”

  (1)过圆上一点圆的切线方程

  过圆上一点圆的切线方程

  过圆上一点圆的切线方程

  如果点在圆外,那么上述直线方程表示过点两切线上两切点的“切点弦”方程。

  如果点在圆内,那么上述直线方程表示与圆相离且垂直于(为圆心)的直线方程,(为圆心到直线的距离)。

  7、曲线与的交点坐标方程组的解;

  过两圆交点的圆(公共弦)系为,当且仅当无平方项时,为两圆公共弦所在直线方程。

  八、圆锥曲线

  1、圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用。

  (1)注意:①圆锥曲线第一定义与配方法的综合运用;

  ②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆点点距除以点线距商是小于1的正数,双曲线点点距除以点线距商是大于1的正数,抛物线点点距除以点线距商是等于1。

  2、圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势。其中,椭圆中、双曲线中。

  重视“特征直角三角形、焦半径的最值、焦点弦的最值及其‘顶点、焦点、准线等相互之间与坐标系无关的几何性质’”,尤其是双曲线中焦半径最值、焦点弦最值的特点。

  3、在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解。特别是:

  ①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”。

  ②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理。

  ③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式

  ④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化。

  4、要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等),以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点。

  注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化。

  ②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响。

  ③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等。

  九、直线、平面、简单多面体

  1、计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算

  2、计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解。注:一斜线与平面上以斜足为顶点的角的两边所成角相等斜线在平面上射影为角的平分线。

  3、空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用。注意:书写证明过程需规范。

  4、直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质。

  如长方体中:对角线长,棱长总和为,全(表)面积为,(结合可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式),

  如三棱锥中:侧棱长相等(侧棱与底面所成角相等)顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直)顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内顶点在底上射影为底面内心。

  5、求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等。注意:补形:三棱锥三棱柱平行六面体

  6、多面体是由若干个多边形围成的几何体。棱柱和棱锥是特殊的多面体。

  正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,即正四面体、正六面体、正八面体、正十二面体、正二十面体。

  7、球体积公式。球表面积公式,是两个关于球的几何度量公式。它们都是球半径及的函数。

  十、导数

  1、导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数,C为常数)

  2、多项式函数的导数与函数的单调性

  在一个区间上(个别点取等号)在此区间上为增函数。

  在一个区间上(个别点取等号)在此区间上为减函数。

  3、导数与极值、导数与最值:

  (1)函数处有且“左正右负”在处取极大值;

  函数在处有且左负右正”在处取极小值。

  注意:①在处有是函数在处取极值的必要非充分条件。

  ②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值。特别是给出函数极大(小)值的条件,一定要既考虑,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记。

  ③单调性与最值(极值)的研究要注意列表!

  (2)函数在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”

  函数在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”;

  注意:利用导数求最值的步骤:先找定义域再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小。

  高中数学知识点的总结 4

  轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。

  一、求动点的轨迹方程的基本步骤。

  1、建立适当的坐标系,设出动点M的坐标;

  2、写出点M的集合;

  3、列出方程=0;

  4、化简方程为最简形式;

  5、检验。

  二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

  1、直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

  2、定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

  3、相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

  4、参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

  5、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的.轨迹方程,这种求轨迹方程的方法叫做交轨法。

  求动点轨迹方程的一般步骤:

  ①建系——建立适当的坐标系;

  ②设点——设轨迹上的任一点P(x,y);

  ③列式——列出动点p所满足的关系式;

  ④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

  ⑤证明——证明所求方程即为符合条件的动点轨迹方程。

  高中数学知识点的总结 5

  1、集合的含义与表示

  集合的三大特性:确定性、互异性、无序性。集合的表示有列举法、描述法。

  描述法格式为:{元素|元素的特征},例如{x|x5,且xN}2、常用数集及其表示方法

  (1)自然数集N(又称非负整数集):0、1、2、3、

  (2)正整数集N

  或N+:1、2、3、

  (3)整数集Z:

  (4)有理数集Q:包含分数、整数、有限小数等

  (5)实数集R:全体实数的集合

  (6)空集Ф:不含任何元素的集合

  3、元素与集合的关系:属于∈,不属于

  4、集合与集合的关系:子集、真子集、相等

  5、重要结论

  (1)传递性:若AB,BC,则AC

  (2)Ф是任何集合的子集,是任意非空集合的真子集。

  6、含有n个元素的集合,它的子集个数共有2n个;真子集有2n1个;非空子集有2n1个(即不计空集);非空的真子集有2n2个。

  7、集合的运算:交集、并集、补集.

  (1)A∩B={x|x∈A,且x∈B}.

  (2)A∪B={x|x∈A,或x∈B}.

  (3)CUAx|xU,且xA注:讨论集合的情况时,不要发遗忘了A的情况。

  8、函数概念

  9、分段函数:在定义域的不同部分,有不同的对应法则的函数。如y2x1x0x23x010、求函数的定义域的原则:(解决任何函数问题,必须要考虑其定义域)

  ①分式的分母不为零;如:y1x1,则x10

  ②偶次方根的被开方数大于或等于零;如:y5x,则5x0

  ③对数的底数大于0且不等于1;如:yloga(x2),则a0且a1

  ④对数的真数大于0;如:yloga(x2),则x20

  ⑤指数为0的底不能为零;如:y(m1)x,则m1011、函数的奇偶性(在整个定义域内考虑)

  (1)奇函数满足f(x)f(x),奇函数的图象关于原点对称;

  (2)偶函数满足f(x)f(x),偶函数的图象关于y轴对称;

  注:

  ①具有奇偶性的函数,其定义域关于原点对称;

  ②若奇函数在原点有定义,则f(0)0

  ③根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。

  12、函数的单调性(在定义域的某个区间内考虑)

  当x1x2时,都有f(x1)f(x2),则f(x)在该区间上是增函数,图象从左到右上升;当x1x2时,都有f(x1)f(x2),则f(x)在该区间上是减函数,图象从左到右下降。

  函数f(x)在某区间上是增函数或减函数,那么说f(x)在该区间具有单调性,该区间叫做单调(增/减)区间

  13、一元二次方程ax2bxc0(a0)

  (1)求根公式:xbb24ac21,22a

  (2)判别式:b4ac

  (3)0时方程有两个不等实根;0时方程有一个实根;0时方程无实根。

  (4)根与系数的关系韦达定理:xxbc12a,x1x2a

  14、二次函数:一般式yax2bxc(a0);两根式ya(xx1)(xx2)(a0)

  (1)顶点坐标为(b4acb2by2a,4a);

  (2)对称轴方程为:x=2a;x0

  (3)当a0时,图象是开口向上的抛物线,在x=b4acb22a处取得最小值4a

  当a0时,图象是开口向下的抛物线,在x=b4acb22a处取得最大值4a

  (4)二次函数图象与x轴的交点个数和判别式的关系:

  0时,有两个交点;0时,有一个交点(即顶点);0时,无交点。

  15、函数的零点

  使f(x)0的实数x20叫做函数的零点。例如x01是函数f(x)x1的一个零点。注:函数yfx有零点函数yfx的图象与x轴有交点方程fx0有实根

  16、函数零点的判定:

  如果函数yfx在区间a,b上的图象是连续不断的一条曲线,并且有f(a)f(b)0。那么,函数yfx在区间a,b内有零点,即存在ca,b,使得fc0。

  17、分数指数幂(a0,m,nN,且n1)m3

  (1)annam。如x3x2;

  (2)amn1132mn。如1;

  (3)(na)na;anamx3x

  (4)当n为奇数时,nana;当n为偶数时,nan|a|a,a0a,a0.1

  18、有理指数幂的运算性质(a0,r,sQ)

  (1)arasars;

  (2)(ar)sars;

  (3)(ab)rarbr

  19、指数函数yax(a0且a1),其中x是自变量,a叫做底数,定义域是Ra10a1yy图象1x10x

  (1)定义域:R0性

  (2)值域:(0,+∞)质

  (3)过定点(0,1),即x=0时,y=1

  (4)在R上是增函数(4)在R上是减函数20、若abN,则叫做以为底N的对数。记作:logaNb(a0,a1,N0)其中,a叫做对数的底数,N叫做对数的真数。

  注:指数式与对数式的互化公式:logaNbabN(a0,a1,N0)

  21、对数的性质

  (1)零和负数没有对数,即logaN中N0;

  (2)1的对数等于0,即loga10;底数的对数等于1,即logaa122、常用对数lgN:以10为底的对数叫做常用对数,记为:log10NlgN

  自然对数lnN:以e(e=2.71828)为底的对数叫做自然对数,记为:logeNlnN23、对数恒等式:alogaNN

  24、对数的运算性质(a>0,a≠1,M>0,N>0)

  (1)loga(MN)logMaMlogaN;

  (2)logaNlogaMlogaN;

  (3)lognaMnlogaM(nR)(注意公式的逆用)

  25、对数的换底公式logmNaNloglog(a0,且a1,m0,且m1,N0)。

  ma推论

  ①或log1nnablog;

  ②logamblogab。

  bam

  26、对数函数ylogax(a0,且a1):其中,x是自变量,a叫做底数,定义域是(0,)

  a10a1y图像x01x01定义域:(0,∞)性质值域:R过定点(1,0)增函数减函数取值范围0

  ③如果两个不重合的平面有一个公共点,那么它们有且仅有一条过该点的公共直线。

  ④平行于同一直线的两条直线平行(平行的传递性)。

  33、等角定理:

  空间中如果两个角的两边对应平行,那么这两个角相等或互补(如图)12334、两条直线的位置关系:平行:(在同一平面内,没有公共点)共面直线(在同一平面内,有一个公共点)异面直线

  相交:(不同在任何一个平面内的两条直线,没有公共点)直线与平面的位置关系:

  (1)直线在平面上;

  (2)直线在平面外(包括直线与平面平行,直线与平面相交)

  两个平面的位置关系:

  (1)两个平面平行;

  (2)两个平面相交35、直线与平面平行:

  定义一条直线与一个平面没有公共点,则这条直线与这个平面平行。判定平面外一条直线与此平面内的一直线平行,则该直线与此平面平行。

  性质一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

  36、平面与平面平行:

  定义两个平面没有公共点,则这两平面平行。

  判定若一个平面内有两条相交直线与另一个平面平行,则这两个平面平行。

  性质

  ①如果两个平面平行,则其中一个面内的任一直线与另一个平面平行。

  ②如果两个平行平面同时与第三个平面相交,那么它们交线平行。

  37、直线与平面垂直:

  定义如果一条直线与一个平面内的任一直线都垂直,则这条直线与这个平面垂直。

  判定一条直线与一个平面内的两相交直线垂直,则这条直线与这个平面垂直。

  性质

  ①垂直于同一平面的两条直线平行。

  ②两平行直线中的一条与一个平面垂直,则另一条也与这个平面垂直。

  38、平面与平面垂直:

  定义两个平行相交,如果它们所成的二面角是直二面角,则这两个平面垂直。判定一个平面过另一个平面的垂线,则这两个平面垂直。

  性质两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

  39、三角形的'五“心”

  (1)O为ABC的外心(各边垂直平分线的交点)。外心到三个顶点的距离相等

  (2)O为ABC的重心(各边中线的交点)。重心将中线分成2:1的两段

  (3)O为ABC的垂心(各边高的交点)。

  (4)O为ABC的内心(各内角平分线的交点)。内心到三边的距离相等

  40、直线的斜率:

  (1)过Ax1,y1,Bx2,y2y12两点的直线,斜率kyx,(x1x2)2x1

  (2)已知倾斜角为的直线,斜率ktan(900)

  41、直线位置关系:已知两直线l1:yk1xb1,l2:yk2xb2,则l1//l2k1k2且b1b2 l1l2k1k21

  特殊情况:

  (1)当k1,k2都不存在时,l1//l2;

  (2)当k1不存在而k20时,l1l24

  2、直线的五种方程:

  ①点斜式yy1k(xx1)(直线l过点(x1,y1),斜率为k).

  ②斜截式ykxb(直线l在y轴上的截距为b,斜率为k)。

  ③两点式yy1xx1yx(直线过两点(x1,y1)与(x2,y2))。2y12x1

  ④截距式xayb1(a,b分别是直线在x轴和y轴上的截距,均不为0)

  ⑤一般式AxByC0(其中A、B不同时为0);可化为斜截式:yABxCB4

  3、(1)平面上两点A(x,y221,y1),B(x22)间的距离公式:|AB|=(x1x2)(y1y2)

  (2)空间两点A(x(x2221,y1,z1),B2,y2,z2)距离公式|AB|=(x1x2)(y1y2)(z1z2)

  (3)点到直线的距离d|Ax0By0C|A2B2(点P(x0,y0),直线l:AxByC0)。

  44、两条平行直线AxByC10与AxByC20间的距离公式:dC1C2A2B2

  注:求直线AxByC0的平行线,可设平行线为AxBym0,求出m即得。

  45、求两相交直线A1xB1yC10与A2xB2yC20的交点:解方程组AxB1yC10A12xB2yC20

  46、圆的方程:

  ①圆的标准方程(xa)2(yb)2r2。其中圆心为(a,b),半径为r

  ②圆的一般方程x2y2DxEyF0。

  其中圆心为(D2,ED2E24F222),半径为r2,其中DE4F>0

  47、直线AxByC0与圆的(xa)2(yb)2r2位置关系

  (1)dr相离0;

  (2)dr相切0;其中d是圆心到直线的距离,且dAaBbC(3)dr相交0。

  A2B23

  48、直线与圆相交于A(x1,y1),B(x2,y2)两点,求弦AB长度的公式:

  (1)|AB|2r2d2

  (2)|AB|1k2(x21x2)4x1x2(结合韦达定理使用),其中k是直线的斜率

  49、两个圆的位置关系:设两圆的圆心分别为O1,O2,半径分别为r1,r2,O1O2d

  1)dr1r2外离4条公切线;

  2)dr1r2外切3条公切线;

  3)r1r2dr1r2相交2条公切线;

  4)dr1r2内切1条公切线;

  5)0dr1r2内含无公切线

  必修③公式表

  50、三种抽样方法的区别与联系类别共同点各自特点相互联系适用范围简单随机抽样从总体中逐个抽取总体中个体数较少分层抽取过程将总体分成几层各层抽样可采用总体有差异明显的几部抽样中每个个体进行抽取简单随机抽样或分组成被抽取的概系统抽样率相等将总体平均分成系统抽样几部分,按事先确在起始部分抽样定的规则分别在各时采用简单随机总体中的个体较多部分抽取抽样

  51、

  (1)频率分布直方图(注意其纵坐标是“频率/组距)

  组数极差,频率频数,小矩形面积组距频率频率。组距样本容量组距

  (2)数字特征

  众数:一组数据中,出现次数最多的数。

  中位数:一组数从小到大排列,最中间的那个数(若最中间有两个数,则取其平均数)。平均数:x1nx1x2xn方差:s2=1n[(x22221x)(x2x)(x3x)(xnx)]

  标准差:s1nxx2x2212xxnx

  注:通过标准差或方差可以判断一组数据的分散程度;其值越小,数据越集中;其值越大,数据越分散。ninxyxiy回归直线方程:ybxa,其中bi1n,aybx,

  x2inx2i1

  注:回归直线一定过样本点中心(x,y)

  52、事件的分类:

  基本事件:一个事件如果不能再被分解为两个或两个以上事件,称作基本事件。

  (1)必然事件:必然事件是每次试验都一定出现的事件。P(必然事件)=1

  (2)不可能事件:任何一次试验都不可能出现的事件称为不可能事件。P(不可能事件)=0

  (3)随机事件:随机试验的每一种结果或随机现象的每一种表现称作随机事件,简称为事件

  53、在n次重复实验中,事件A发生的次数为m,则事件A发生的频率为m/n,当n很大时,m总是在某个常数值附近摆动,就把这个常数叫做事件A的概率。(概率范围:0PA1)

  54、互斥事件概念:在一次随机事件中,不可能同时发生的两个事件,叫做互斥事件(如图1)。如果事件A、B是互斥事件,则P(A+B)=P(A)+P(B)

  55、对立事件(如图2):指两个事件不可能同时发生,但必有一个发生。AB图1对立事件性质:P(A)+P(A)=1,其中A表示事件A的对立事件。

  56、古典概型是最简单的随机试验模型,古典概型有两个特征:AB

  (1)基本事件个数是有限的;

  (2)各基本事件的出现是等可能的,即它们发生的概率相同.

  57、设一试验有n个等可能的基本事件,而事件A恰包含其中的m个基本事件,则事件A的概率P(A)公式为PAA包含的基本事件的个数基本事件的总数=mn

  运用互斥事件的概率加法公式时,首先要判断它们是否互斥,再由随机事件的概率公式分别求它们的概率,然后计算。在计算某些事件的概率较复杂时,可转而先示对立事件的概率。58、几何概型的概率公式:PA构成事件A的区域长度(面积或体积)试验的全部结果构成的区域长度(面积或体积)

  必修④公式表

  r59、终边相同角构成的集合:|2k,kZ

  l)l

  60、弧度计算公式:r

  61、扇形面积公式:S12lr12r2(为弧度)62、三角函数的定义:已知Px,y是的终边上除原点外的任一点P(x,y)r则siny,cosx,tany,其中r2x2)yrrxy2x63、三角函数值的符号++++

  ++sincostan

  4

  64、特殊角的三角函数值:0235643234632sin012332122212220—1cos132112220—2—232—2—10tan03313不存—1—3在—330不存在65、同角三角函数的关系:sin2cos21,tansincos

  66、和角与差角公式:二倍角公式:

  sin()sincoscossin;sin22sincos

  cos()coscossinsin;cos2cos2sin212sin2

  tan()tantan2cos211tantan。tan22tan1tan267、诱导公式记忆口诀:奇变偶不变,符号看象限;其中,奇偶是指2的个数

  sin2ksinsinsinsinsinsinsincos2kcoscoscoscoscoscoscos

  tan2ktantantantantantantansin(2)coscos(2)sinsin(2)coscos(2)sin

  68、辅助角公式:asinbcos=a2b2sin()(辅助角所在象限与点(a,b)的象限相同,且

  tanba)。主要在求周期、单调性、最值时运用。如y3sinxcosx2sin(x6)

  69、半角公式(降幂公式):sin21cos1cos22,cos22270、三角函数yAsin(x)的性质(A0,0)

  (1)最小正周期T2;振幅为A;频率f1T;相位:x;初相:;值域:[A,A];

  对称轴:由x2k解得x;对称中心:由xk解得x组成的点(x,0)

  (2)图象平移:x左加右减、y上加下减。

  例如:向左平移1个单位,解析式变为yAsin[(x1)]向下平移3个单位,解析式变为yAsin(x)3

  (3)函数ytan(x)的最小正周期T。71、正弦定理:在一个三角形中,各边与对应角正弦的比相等。

  asinAbsinBcsinC2R(R是三角形外接圆半径)cosAb2c2a2a2b2c22bccosA,2bc,ca2cacosB,推论cosc2a272、余弦定理:bBb2222,c2a2b22abcosC。2caosCa2b2c2c2ab。73、三角形的面积公式:S11ABC2absinC2acsinB12bcsinA。74、三角函数的图象与性质和性质三角函数ysinxycosxytanxyyy11图象xx—0x3—122—20—122—0222定义域(,)(,)(k2,k2)值域[—1,1][—1,1](,)最大值x22k,ymax1x2k,ymax1最小值x22k,ymin1x2k,ymin1周期22奇偶性奇函数偶函数奇函数在[22k,22k]在[2k,2k]在(2k,22k)单调性上是增函数上是增函数上都是增函数kZ在[22k,322k]在[2k,2k]上是减函数上是减函数76、向量的三角形法则:79、向量的平行平行四边形法则:

  a+bbabab—aba+ba—177、平面向量的坐标运算:设向量a=(x1,y1),向量b=(x2,y2)

  (1)加法a+b=(x1x2,y1y2)。(2)减法a—b=(x1x2,y1y2)。(3)数乘a=(x1,y1)(x1,y1)

  (4)数量积ab=|a||b|cosθ=x1x2y1y2,其中是这两个向量的夹角

  (5)已知两点A(x1,y1),B(x2,y2),则向量ABOBOA(x2x1,y2y1)。

  78、向量a=(x,y)的模:|a|=(a)22222aaxy,即|a|a

  79、两向量的夹角公式cosabx1x2y1y2abx2y22y2

  11x2280、向量的平行与垂直(b0)

  a||bb=λax1y2x2y10。记法:a=(x1,y1),b=(x2,y2)

  abab=0x1x2y1y20。记法:a=(x1,y1),b=(x2,y2)

  必修⑤公式表

  81、数列前n项和与通项公式的关系:

  aS1,n1;n(数列{an}的前n项的和为sna1a2aSn)。nSn1,n2.82、等差、等比数列公式对比nN等差数列等比数列定义式aanan1danq(q0)n1通项公式及a1推广公式anaa1n1mddana1qnnmnanamqnm中项公式若a,A,b成等差,则Aab若a,G,b成等比,则G22ab运算性质若mnpq2r,则若mnpq2r,则anamapaq2aranamapaqa2r前n项和公Sna1annna21q1,式Snnann112da11-qna11qanq1q,q1。一个性质Sm,S2mSm,S3mS2m成等差数列Sm,S2mSm,S3mS2m成等比数列83、解不等式(1)、含有绝对值的不等式

  当a>0时,有xax2a2axa。[小于取中间]

  xax2a2xa或xa。[大于取两边]

  (2)、解一元二次不等式ax2bxc0,(a0)的步骤:

  ①求判别式b24ac000②求一元二次方程的解:两相异实根一个实根没有实根③画二次函数yax2bxc的图象

  ④结合图象写出解集

  ax2bxc0解集xxxb2或xx1xx2aR

  ax2bxc0解集xx1xx2

  注:ax2bxc0(a0)解集为Rax2bxc0对xR恒成立0(3)分式不等式:先移项通分,化一边为0,再将除变乘,化为整式不等式,求解。如解分式不等式

  x1x1:先移项x1x10;通分(x1)xx0;再除变乘(2x1)x0,解出。

  84、线性规划:

  直线AxByC0

  (1)一条直线将平面分为三部分(如图):

  AxByC0(2)不等式AxByC0表示直线AxByC0

  AxByC0

  某一侧的平面区域,验证方法:取原点(0,0)代入不

  等式,若不等式成立,则平面区域在原点所在的一侧。假如直线恰好经过原点,则取其它点来验证,例如取点(1,0)。

  (3)线性规划求最值问题:一般情况可以求出平面区域各个顶点的坐标,代入目标函数z,最大的为最大值。

  高中数学知识点的总结 6

  等比数列公式性质知识点

  1.等比数列的有关概念

  (1)定义:

  如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q(n∈N_,q为非零常数).

  (2)等比中项:

  如果a、G、b成等比数列,那么G叫做a与b的等比中项.即:G是a与b的等比中项a,G,b成等比数列G2=ab.

  2.等比数列的有关公式

  (1)通项公式:an=a1qn-1.

  3.等比数列{an}的常用性质

  (1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),则am·an=ap·aq=a.

  特别地,a1an=a2an-1=a3an-2=….

  (2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列Sm,S2m-Sm,S3m-S2m,…仍是等比数列(此时q≠-1);an=amqn-m.

  4.等比数列的特征

  (1)从等比数列的定义看,等比数列的任意项都是非零的,公比q也是非零常数.

  (2)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.

  5.等比数列的前n项和Sn

  (1)等比数列的前n项和Sn是用错位相减法求得的`,注意这种思想方法在数列求和中的运用.

  (2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.

  等比数列知识点

  1.等比中项

  如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。

  有关系:

  注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G2=ab是a,G,b三数成等比数列的必要不充分条件。

  2.等比数列通项公式

  an=a1_q’(n-1)(其中首项是a1,公比是q)

  an=Sn-S(n-1)(n≥2)

  前n项和

  当q≠1时,等比数列的前n项和的公式为

  Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)

  当q=1时,等比数列的前n项和的公式为

  Sn=na1

  3.等比数列前n项和与通项的关系

  an=a1=s1(n=1)

  an=sn-s(n-1)(n≥2)

  4.等比数列性质

  (1)若m、n、p、q∈N_,且m+n=p+q,则am·an=ap·aq;

  (2)在等比数列中,依次每k项之和仍成等比数列。

  (3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

  (4)等比中项:q、r、p成等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。

  记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

  (5)等比数列前n项之和Sn=a1(1-q’n)/(1-q)

  (6)任意两项am,an的关系为an=am·q’(n-m)

  (7)在等比数列中,首项a1与公比q都不为零。

  注意:上述公式中a’n表示a的n次方。

  等比数列知识点总结

  等比数列:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。

  1:等比数列通项公式:an=a1_q^(n-1);推广式:an=am·q^(n-m);

  2:等比数列求和公式:等比求和:Sn=a1+a2+a3+.......+an

  ①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)

  ②当q=1时,Sn=n×a1(q=1)记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  3:等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。

  4:性质:

  ①若m、n、p、q∈N,且m+n=p+q,则am·an=ap_aq;

  ②在等比数列中,依次每k项之和仍成等比数列.

  例题:设ak,al,am,an是等比数列中的第k、l、m、n项,若k+l=m+n,求证:ak_al=am_an

  证明:设等比数列的首项为a1,公比为q,则ak=a1·q^(k-1),al=a1·q^(l-1),am=a1·q^(m-1),an=a1·q^(n-1)

  所以:ak_al=a^2_q^(k+l-2),am_an=a^2_q(m+n-2),故:ak_al=am_an

  说明:这个例题是等比数列的一个重要性质,它在解题中常常会用到。它说明等比数列中距离两端(首末两项)距离等远的两项的乘积等于首末两项的乘积,即:a(1+k)·a(n-k)=a1·an

  对于等差数列,同样有:在等差数列中,距离两端等这的两项之和等于首末两项之和。即:a(1+k)+a(n-k)=a1+an

  高中数学知识点的总结 7

  一、求导数的方法

  (1)基本求导公式

  (2)导数的四则运算

  (3)复合函数的导数

  设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即

  二、关于极限

  1、数列的极限:

  粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。记作:=A。如:

  2、函数的极限:

  当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作

  三、导数的概念

  1、在处的导数。

  2、在的导数。

  3。函数在点处的导数的几何意义:

  函数在点处的导数是曲线在处的切线的斜率,

  即k=,相应的切线方程是

  注:函数的导函数在时的函数值,就是在处的`导数。

  例、若=2,则=()A—1B—2C1D

  四、导数的综合运用

  (一)曲线的切线

  函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。由此,可以利用导数求曲线的切线方程。具体求法分两步:

  (1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=

  (2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。

  高中数学知识点的总结 8

  一、集合、简易逻辑

  1、集合;

  2、子集;

  3、补集;

  4、交集;

  5、并集;

  6、逻辑连结词;

  7、四种命题;

  8、充要条件。

  二、函数

  1、映射;

  2、函数;

  3、函数的单调性;

  4、反函数;

  5、互为反函数的函数图象间的关系;

  6、指数概念的扩充;

  7、有理指数幂的运算;

  8、指数函数;

  9、对数;

  10、对数的运算性质;

  11、对数函数。

  12、函数的应用举例。

  三、数列(12课时,5个)

  1、数列;

  2、等差数列及其通项公式;

  3、等差数列前n项和公式;

  4、等比数列及其通顶公式;

  5、等比数列前n项和公式。

  四、三角函数

  1、角的概念的推广;

  2、弧度制;

  3、任意角的三角函数;

  4、单位圆中的三角函数线;

  5、同角三角函数的基本关系式;

  6、正弦、余弦的诱导公式;

  7、两角和与差的正弦、余弦、正切;

  8、二倍角的正弦、余弦、正切;

  9、正弦函数、余弦函数的图象和性质;

  10、周期函数;

  11、函数的奇偶性;

  12、函数的图象;

  13、正切函数的图象和性质;

  14、已知三角函数值求角;

  15、正弦定理;

  16、余弦定理;

  17、斜三角形解法举例。

  五、平面向量

  1、向量;

  2、向量的加法与减法;

  3、实数与向量的积;

  4、平面向量的坐标表示;

  5、线段的定比分点;

  6、平面向量的数量积;

  7、平面两点间的距离;

  8、平移。

  六、不等式

  1、不等式;

  2、不等式的基本性质;

  3、不等式的证明;

  4、不等式的解法;

  5、含绝对值的不等式。

  七、直线和圆的方程

  1、直线的倾斜角和斜率;

  2、直线方程的点斜式和两点式;

  3、直线方程的一般式;

  4、两条直线平行与垂直的条件;

  5、两条直线的交角;

  6、点到直线的距离;

  7、用二元一次不等式表示平面区域;

  8、简单线性规划问题;

  9、曲线与方程的概念;

  10、由已知条件列出曲线方程;

  11、圆的标准方程和一般方程;

  12、圆的参数方程。

  八、圆锥曲线

  1、椭圆及其标准方程;

  2、椭圆的简单几何性质;

  3、椭圆的参数方程;

  4、双曲线及其标准方程;

  5、双曲线的简单几何性质;

  6、抛物线及其标准方程;

  7、抛物线的简单几何性质。

  九、直线、平面、简单何体

  1、平面及基本性质;

  2、平面图形直观图的画法;

  3、平面直线;

  4、直线和平面平行的判定与性质;

  5、直线和平面垂直的判定与性质;

  6、三垂线定理及其逆定理;

  7、两个平面的位置关系;

  8、空间向量及其加法、减法与数乘;

  9、空间向量的坐标表示;

  10、空间向量的数量积;

  11、直线的方向向量;

  12、异面直线所成的角;

  13、异面直线的公垂线;

  14、异面直线的距离;

  15、直线和平面垂直的性质;

  16、平面的法向量;

  17、点到平面的距离;

  18、直线和平面所成的角;

  19、向量在平面内的射影;

  20、平面与平面平行的性质;

  21、平行平面间的距离;

  22、二面角及其平面角;

  23、两个平面垂直的判定和性质;

  24、多面体;

  25、棱柱;

  26、棱锥;

  27、正多面体;

  28、球。

  十、排列、组合、二项式定理

  1、分类计数原理与分步计数原理;

  2、排列;

  3、排列数公式;

  4、组合;

  5、组合数公式;

  6、组合数的两个性质;

  7、二项式定理;

  8、二项展开式的性质。

  十一、概率

  1、随机事件的概率;

  2、等可能事件的概率;

  3、互斥事件有一个发生的概率;

  4、相互独立事件同时发生的概率;

  5、独立重复试验。

  必修一函数重点知识整理

  1、函数的奇偶性

  (1)若f(x)是偶函数,那么f(x)=f(—x);

  (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

  (3)判断函数奇偶性可用定义的等价形式:f(x)±f(—x)=0或(f(x)≠0);

  (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

  (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

  2、复合函数的有关问题

  (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

  (2)复合函数的单调性由“同增异减”判定;

  3、函数图像(或方程曲线的对称性)

  (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

  (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的.对称点仍在C2上,反之亦然;

  (3)曲线C1:f(x,y)=0,关于y=x+a(y=—x+a)的对称曲线C2的方程为f(y—a,x+a)=0(或f(—y+a,—x+a)=0);

  (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a—x,2b—y)=0;

  (5)若函数y=f(x)对x∈R时,f(a+x)=f(a—x)恒成立,则y=f(x)图像关于直线x=a对称;

  (6)函数y=f(x—a)与y=f(b—x)的图像关于直线x=对称;

  4、函数的周期性

  (1)y=f(x)对x∈R时,f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

  (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

  (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

  (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

  (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

  (6)y=f(x)对x∈R时,f(x+a)=—f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

  5、方程k=f(x)有解k∈D(D为f(x)的值域);

  6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  7、(1)(a>0,a≠1,b>0,n∈R+);

  (2)l og a N=(a>0,a≠1,b>0,b≠1);

  (3)l og a b的符号由口诀“同正异负”记忆;

  (4)a log a N= N(a>0,a≠1,N>0);

  8、判断对应是否为映射时,抓住两点:

  (1)A中元素必须都有象且唯一;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

  10、对于反函数,应掌握以下一些结论:

  (1)定义域上的单调函数必有反函数;

  (2)奇函数的反函数也是奇函数;

  (3)定义域为非单元素集的偶函数不存在反函数;

  (4)周期函数不存在反函数;

  (5)互为反函数的两个函数具有相同的单调性;

  (6)y=f(x)与y=f—1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。

  11、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

  12、依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

  13、恒成立问题的处理方法:

  (1)分离参数法;

  (2)转化为一元二次方程的根的分布列不等式(组)求解。

  拓展阅读:高中数学复习方法

  1、把答案盖住看例题

  例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。

  所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。

  经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。

  2、研究每题都考什么

  数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。

  3、错一次反思一次

  每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。

  学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了。

  4、分析试卷总结经验

  每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。

  高中数学知识点的总结 9

  有界性

  设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。

  单调性

  设函数f(x)的定义域为D,区间I包含于D.如果对于区间上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。

  奇偶性

  设为一个实变量实值函数,若有f(—x)=—f(x),则f(x)为奇函数。

  几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变。

  奇函数的例子有x、sin(x)、sinh(x)和erf(x)。

  设f(x)为一实变量实值函数,若有f(x)=f(—x),则f(x)为偶函数。

  几何上,一个偶函数关于y轴对称,亦即其图在对y轴映射后不会改变。

  偶函数的'例子有|x|、x2、cos(x)和cosh(x)。

  偶函数不可能是个双射映射。

  连续性

  在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。

  高中数学知识点的总结 10

  一、平面的基本性质与推论

  1、平面的基本性质:

  公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;

  公理2过不在一条直线上的三点,有且只有一个平面;

  公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

  2、空间点、直线、平面之间的位置关系:

  直线与直线—平行、相交、异面;

  直线与平面—平行、相交、直线属于该平面(线在面内,最易忽视);

  平面与平面—平行、相交。

  3、异面直线:

  平面外一点A与平面一点B的连线和平面内不经过点B的.直线是异面直线(判定);

  所成的角范围(0,90)度(平移法,作平行线相交得到夹角或其补角);

  两条直线不是异面直线,则两条直线平行或相交(反证);

  异面直线不同在任何一个平面内。

  求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角

  二、空间中的平行关系

  1、直线与平面平行(核心)

  定义:直线和平面没有公共点

  判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)

  性质:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的交线平行

  2、平面与平面平行

  定义:两个平面没有公共点

  判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行

  性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。

  3、常利用三角形中位线、平行四边形对边、已知直线作一平面找其交线

  三、空间中的垂直关系

  1、直线与平面垂直

  定义:直线与平面内任意一条直线都垂直

  判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直

  性质:垂直于同一直线的两平面平行

  推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面

  直线和平面所成的角:【0,90】度,平面内的一条斜线和它在平面内的射影说成的锐角,特别规定垂直90度,在平面内或者平行0度

  2、平面与平面垂直

  定义:两个平面所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线所成的角)

  判定:一个平面过另一个平面的垂线,则这两个平面垂直

  性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直

  高中数学知识点的总结 11

  集合的分类:

  (1)按元素属性分类,如点集,数集。

  (2)按元素的个数多少,分为有/无限集

  关于集合的概念:

  (1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

  (2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。

  (3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。

  集合可以根据它含有的元素的个数分为两类:

  含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

  非负整数全体构成的集合,叫做自然数集,记作N。

  在自然数集内排除0的集合叫做正整数集,记作N+或N_。

  整数全体构成的集合,叫做整数集,记作Z。

  有理数全体构成的集合,叫做有理数集,记作Q。(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)

  实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的'点一一对应的数。)

  1、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}。

  有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。

  例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}。

  无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}。

  2、描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。

  例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”

  而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。

  一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。

  例如:集合A={x∈R│x2—1=0}的特征是X2—1=0

  高中数学知识点的总结 12

  ★高中数学导数知识点

  一、早期导数概念————特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f(A+E)—f(A),发现的因子E就是我们所说的导数f(A)。

  二、17世纪————广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。

  三、19世纪导数————逐渐成熟的理论1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《无穷小分析概论》中定义导数如果函数y=f(x)在变量x的两个给定的界限之间保持连续并且我们为这样的.变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。19世纪60年代以后魏尔斯特拉斯创造了ε—δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。

  四、实无限将异军突起微积分第二轮初等化或成为可能微积分学理论基础大体可以分为两个部分。一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。就历史来看两种理论都有一定的道理。其中实无限用了150年后来极限论就是现在所使用的。光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论都不是最好的手段。

  ★高中数学导数要点

  1、求函数的单调性:

  利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。

  利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。

  反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,

  (1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

  (2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);

  (3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。

  2、求函数的极值:

  设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。

  可导函数的极值,可通过研究函数的单调性求得,基本步骤是:

  (1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的

  变化情况:

  (4)检查f(x)的符号并由表格判断极值。

  3、求函数的最大值与最小值:

  如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的最大值。函数在定义域内的极值不一定唯一,但在定义域内的最值是唯一的。

  求函数f(x)在区间[a,b]上的最大值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;

  (2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的最大值与最小值。

  4、解决不等式的有关问题:

  (1)不等式恒成立问题(绝对不等式问题)可考虑值域。

  f(x)(xA)的值域是[a,b]时,

  不等式f(x)0恒成立的充要条件是f(x)max0,即b0;

  不等式f(x)0恒成立的充要条件是f(x)min0,即a0。

  f(x)(xA)的值域是(a,b)时,

  不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。

  (2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。

  5、导数在实际生活中的应用:

  实际生活求解最大(小)值问题,通常都可转化为函数的最值。在利用导数来求函数最值时,一定要注意,极值点唯一的单峰函数,极值点就是最值点,在解题时要加以说明。

  高中数学知识点的总结 13

  (1)不等关系

  感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。

  (2)一元二次不等式

  ①经历从实际情境中抽象出一元二次不等式模型的过程。

  ②通过函数图象了解一元二次不等式与相应函数、方程的联系。

  ③会解一元二次不等式,对给定的'一元二次不等式,尝试设计求解的程序框图。

  (3)二元一次不等式组与简单线性规划问题

  ①从实际情境中抽象出二元一次不等式组。

  ②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。

  ③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。

  (4)基本不等式

  ①探索并了解基本不等式的证明过程。

  ②会用基本不等式解决简单的(小)值问题。

  高中数学知识点的总结 14

  1.求函数的单调性

  利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数.

  利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间.

  反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,

  (1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

  (2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);

  (3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立.

  2.求函数的极值:

  设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的`点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值).

  可导函数的极值,可通过研究函数的单调性求得,基本步骤是:

  (1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况:

  (4)检查f(x)的符号并由表格判断极值.

  3.求函数的值与最小值:

  如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值.函数在定义域内的极值不一定,但在定义域内的最值是的

  求函数f(x)在区间[a,b]上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;

  (2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的值与最小值.

  4.解决不等式的有关问题:

  (1)不等式恒成立问题(绝对不等式问题)可考虑值域.

  f(x)(xA)的值域是[a,b]时,

  不等式f(x)0恒成立的充要条件是f(x)max0,即b0;

  不等式f(x)0恒成立的充要条件是f(x)min0,即a0.

  f(x)(xA)的值域是(a,b)时,

  不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0.

  (2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0.

  5.导数在实际生活中的应用:

  实际生活求解(小)值问题,通常都可转化为函数的最值.在利用导数来求函数最值时,一定要注意,极值点的单峰函数,极值点就是最值点,在解题时要加以说明.

  高中数学知识点的总结 15

  一、圆及圆的相关量的定义

  1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

  2.圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫

  做直径。

  3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

  4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

  5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

  6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

  7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。

  二、有关圆的字母表示方法

  圆--⊙ 半径—r 弧--⌒ 直径—d

  扇形弧长/圆锥母线—l 周长—C 面积—S三、有关圆的基本性质与定理(27个)

  1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):

  P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO

  2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

  3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定

  理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

  4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

  5.一条弧所对的圆周角等于它所对的圆心角的一半。

  6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

  7.不在同一直线上的3个点确定一个圆。

  8.一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。

  9.直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距

  离):

  AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO

  10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

  11.圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):

  外离P>R+r;外切P=R+r;相交R-r

  三、有关圆的计算公式

  1.圆的周长C=2πr=πd

  2.圆的面积S=s=πr?

  3.扇形弧长l=nπr/180

  4.扇形面积S=nπr? /360=rl/2

  5.圆锥侧面积S=πrl

  四、圆的方程

  1.圆的标准方程

  在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是

  (x-a)^2+(y-b)^2=r^2

  2.圆的一般方程

  把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是

  x^2+y^2+Dx+Ey+F=0

  和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2

  相关知识:圆的离心率e=0.在圆上任意一点的曲率半径都是r.

  五、圆与直线的位置关系判断

  平面内,直线Ax+By+C=O与圆x^2+y^2+Dx+Ey+F=0的'位置关系判断一般方法是

  讨论如下2种情况:

  (1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

  代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0.

  利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:

  如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交

  如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切

  如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离

  (2)如果B=0即直线为Ax+C=0,即x=-C/A.它平行于y轴(或垂直于x轴)

  将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2

  令y=b,求出此时的两个x值x1,x2,并且我们规定x1

  当x=-C/Ax2时,直线与圆相离

  当x1

  当x=-C/A=x1或x=-C/A=x2时,直线与圆相切

  圆的定理:

  1.不在同一直线上的三点确定一个圆。

  2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  推论1.①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  推论2.圆的两条平行弦所夹的弧相等

  3.圆是以圆心为对称中心的中心对称图形

  4.圆是定点的距离等于定长的点的集合

  5.圆的内部可以看作是圆心的距离小于半径的点的集合

  6.圆的外部可以看作是圆心的距离大于半径的点的集合

  7.同圆或等圆的半径相等

  8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

  10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

  11.定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角

  12.①直线L和⊙O相交 d

  ②直线L和⊙O相切 d=r

  ③直线L和⊙O相离 d>r

  13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

  14.切线的性质定理 圆的切线垂直于经过切点的半径

  15.推论1 经过圆心且垂直于切线的直线必经过切点

  16.推论2 经过切点且垂直于切线的直线必经过圆心

  17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角

  18.圆的外切四边形的两组对边的和相等 外角等于内对角

  19.如果两个圆相切,那么切点一定在连心线上

  20.①两圆外离 d>R+r ②两圆外切 d=R+r

  ③两圆相交 R-rr)

  ④两圆内切 d=R-r(R>r) ⑤两圆内含dr)

  21.定理 相交两圆的连心线垂直平分两圆的公共弦

  22.定理 把圆分成n(n≥3):

  (1)依次连结各分点所得的多边形是这个圆的内接正n边形

  (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  23.定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  24.正n边形的每个内角都等于(n-2)×180°/n

  25.定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

  26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长

  27.正三角形面积√3a/4 a表示边长

  28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

  29.弧长计算公式:L=n兀R/180

  30.扇形面积公式:S扇形=n兀R^2/360=LR/2

  31.内公切线长= d-(R-r) 外公切线长= d-(R+r)

  32.定理 一条弧所对的圆周角等于它所对的圆心角的一半

  33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  34.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径

  35.弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

  高中数学知识点的总结 16

  高一数学上学期知识点:幂函数

  定义:

  形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

  定义域和值域:

  当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域

  性质:

  对于a的`取值为非零有理数,有必要分成几种情况来讨论各自的特性:

  首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

  排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

  排除了为0这种可能,即对于x<0 x="">0的所有实数,q不能是偶数;

  排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

  总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:

  如果a为任意实数,则函数的定义域为大于0的所有实数;

  如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

  在x大于0时,函数的值域总是大于0的实数。

  在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

  而只有a为正数,0才进入函数的值域。

  由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.

  可以看到:

  (1)所有的图形都通过(1,1)这点。

  (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

  (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

  (4)当a小于0时,a越小,图形倾斜程度越大。

  (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

  (6)显然幂函数无界。

  高中数学知识点的总结 17

  1、等比中项

  如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。

  有关系:

  注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G2=ab是a,G,b三数成等比数列的必要不充分条件。

  2、等比数列通项公式

  an=a1_q’(n-1)(其中首项是a1,公比是q)

  an=Sn-S(n-1)(n≥2)

  前n项和

  当q≠1时,等比数列的'前n项和的公式为

  Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)

  当q=1时,等比数列的前n项和的公式为

  Sn=na1

  3、等比数列前n项和与通项的关系

  an=a1=s1(n=1)

  an=sn-s(n-1)(n≥2)

  4、等比数列性质

  (1)若m、n、p、q∈N_,且m+n=p+q,则am·an=ap·aq;

  (2)在等比数列中,依次每k项之和仍成等比数列。

  (3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

  (4)等比中项:q、r、p成等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。

  记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

  (5)等比数列前n项之和Sn=a1(1-q’n)/(1-q)

  (6)任意两项am,an的关系为an=am·q’(n-m)

  (7)在等比数列中,首项a1与公比q都不为零。

  注意:上述公式中a’n表示a的n次方。

  等比数列求和公式

  q≠1时,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)

  q=1时,Sn=na1

  (a1为首项,an为第n项,d为公差,q为等比)

  这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。注:q=1时,{an}为常数列。利用等比数列求和公式可以快速的计算出该数列的和。

  等比数列求和公式推导

  Sn=a1+a2+a3+、、、+an(公比为q)

  qSn=a1q + a2q + a3q +、、、+ anq = a2+ a3+ a4+、、、+ an+ a(n+1)

  Sn-qSn=(1-q)Sn=a1-a(n+1)

  a(n+1)=a1qn

  Sn=a1(1-qn)/(1-q)(q≠1)

  高中数学知识点的总结 18

  (一) 解斜三角形

  1、解斜三角形的主要定理:正弦定理和余弦定理和余弦的射影公式和各种形式的面积的公式。

  2、能解决的四类型的问题:(1)已知两角和一条边(2)已知两边和夹角(3)已知三边(4) 已知两边和其中一边的对角。

  (二) 解直角三角形

  1、解直角三角形的主要定理:在直角三角形ABC中,直角为角C,角A和角B是它的两锐角,所对的边a、b、c,(1) 角A和角B的和是90度;

  (2) 勾股定理:a的平方加上+b的平方=c的平方;(3) 角A的正弦等于a比上c,角A的余弦等于b比上c,角B的正弦等于b比上c,角B的余弦等于a比上c;(4)面积的公式s=ab/2;此外还有射影定理,内外切接圆的半径。

  2、解直角三角形的四种类型:

  (1)已知两直角边:根据勾股定理先求出斜边,用三角函数求出两锐角中的一角,再用互余关系求出另一角或用三角函数求出两锐角中的两角;

  (2)已知一直角边和斜边,根据勾股定理先求出另一直角边,问题转化为(1);

  (3)已知一直角边和一锐角,可求出另一锐角,运用正弦或余弦,算出斜边,用勾股定理算出另一直角边;(4)已知斜边和一锐角,先算出已知角的对边,根据勾股定理先求出另一直角边,问题转化为(1)。

  如何学好高中数学

  1.先看笔记后做作业。 有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。

  2.做题之后加强反思。 学生一定要明确,现在正坐着的题,一定不是考试的`题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思。总结一下自己的收获。要总结出,这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,日久天长,构建起一个内容与方法的科学的网络系统。

  3.主动复习总结提高。 进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。

  倍角公式

  Sin2A=2SinA?CosA

  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

  tan2A=(2tanA)/(1-tanA^2)

  (注:SinA^2是sinA的平方sin2(A))

  高中数学知识点的总结 19

  集合的分类:

  (1)按元素属性分类,如点集,数集。

  (2)按元素的个数多少,分为有/无限集

  关于集合的概念:

  (1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

  (2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。

  (3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。

  集合可以根据它含有的元素的个数分为两类:

  含有有限个元素的集合叫做有限集,含有无限个元素的'集合叫做无限集。

  非负整数全体构成的集合,叫做自然数集,记作N。

  在自然数集内排除0的集合叫做正整数集,记作N+或N_。

  整数全体构成的集合,叫做整数集,记作Z。

  有理数全体构成的集合,叫做有理数集,记作Q。(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)

  实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。)

  1、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}。

  有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。

  例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}。

  无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}。

  2、描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。

  例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”

  而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。

  一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。

  例如:集合A={x∈R│x2—1=0}的特征是X2—1=0

  高中数学知识点的总结 20

  首先,我们要了解下正弦定理的应用领域

  在解三角形中,有以下的应用领域:

  (1)已知三角形的两角与一边,解三角形

  (2)已知三角形的两边和其中一边所对的角,解三角形

  (3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系

  直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦

  正弦定理

  在△ABC中,角A、B、C所对的边分别为a、b、c,则有a/sinA=b/sinB=c/sinC=2R(其中R为三角形外接圆的半径)

  其次,余弦的应用领域

  余弦定理

  余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。

  正弦定理的变形公式

  (1) a=2RsinA, b=2RsinB, c=2RsinC;

  (2) sinA : sinB : sinC = a : b : c; 在一个三角形中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径已知三角形是确定的,利用正弦定理解三角形时,其解是唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的.方法及大边对大角,大角对大边定理和三角形内角和定理去考虑解决问题

  (3)相关结论: a/sinA=b/sinB=c/sinC=(a+b)/(sinA+sinB)=(a+b+c)/(sinA+sinB+sinC) c/sinC=c/sinD=BD=2R(R为外接圆半径)

  (4)设R为三角外接圆半径,公式可扩展为:a/sinA=b/sinB=c/sinC=2R,即当一内角为90时,所对的边为外接圆的直径。灵活运用正弦定理,还需要知道它的几个变形 sinA=a/2R,sinB=b/2R,sinC=c/2R asinB=bsinA,bsinC=csinB,asinC=csinA

  (5)a=bsinA/sinB sinB=bsinA/a

  正弦、余弦典型例题

  1.在△ABC中,C=90,a=1,c=4,则sinA 的值为

  2.已知为锐角,且,则 的度数是( ) A.30 B.45 C.60 D.90

  3.在△ABC中,若,A,B为锐角,则C的度数是() A.75 B.90 C.105 D.120

  4.若A为锐角,且,则A=() A.15 B.30 C.45 D.60

  5.在△ABC中,AB=AC=2,ADBC,垂足为D,且AD= ,E是AC中点, EFBC,垂足为F,求sinEBF的值。

  正弦、余弦解题诀窍

  1、已知两角及一边,或两边及一边的对角(对三角形是否存在要讨论)用正弦定理

  2、已知三边,或两边及其夹角用余弦定理

  3、余弦定理对于确定三角形形状非常有用,只需要知道最大角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。

  高中数学知识点的总结 21

  一、直线与方程高考考试内容及考试要求:

  考试内容:

  1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;

  2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;

  考试要求:

  1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程;

  2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系;

  二、直线与方程

  课标要求:

  1.在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;

  2.理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;

  3.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;

  4.会用代数的方法解决直线的有关问题,包括求两直线的交点,判断两条直线的位置关系,求两点间的距离、点到直线的距离以及两条平行线之间的距离等。

  要点精讲:

  1.直线的倾斜角:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角。特别地,当直线l与x轴平行或重合时,规定α= 0°.

  倾斜角α的取值范围:0°≤α<180°. 当直线l与x轴垂直时, α= 90°.

  2.直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα

  (1)当直线l与x轴平行或重合时,α=0°,k = tan0°=0;

  (2)当直线l与x轴垂直时,α= 90°,k 不存在。

  由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在。

  3.过两点p1(x1,y1),p2(x2,y2)(x1≠x2)的直线的斜率公式:

  (若x1=x2,则直线p1p2的斜率不存在,此时直线的倾斜角为90°)。

  4.两条直线的平行与垂直的判定

  (1)若l1,l2均存在斜率且不重合:

  ①;②

  注: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立。

  (2)

  若A1、A2、B1、B2都不为零。

  注意:若A2或B2中含有字母,应注意讨论字母=0与0的情况。

  两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的'个数。

  5.直线方程的五种形式

  确定直线方程需要有两个互相独立的条件,确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围。

  直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。

  6.直线的交点坐标与距离公式

  (1)两直线的交点坐标

  一般地,将两条直线的方程联立,得方程组

  若方程组有唯一解,则两条直线相交,解即为交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行。

  (2)两点间距离

  两点P1(x1,y1),P2(x2,y2)间的距离公式

  特别地:轴,则、轴,则

  (3)点到直线的距离公式

  点到直线的距离为:

  (4)两平行线间的距离公式:

  若,则:

  注意点:x,y对应项系数应相等。

  高中数学知识点的总结 22

  选修4-4数学知识点

  一、选考内容《坐标系与参数方程》高考考试大纲要求:

  1.坐标系:

  ①理解坐标系的作用.

  ②了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.

  ③能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.

  ④能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.

  2.参数方程:①了解参数方程,了解参数的意义.

  ②能选择适当的参数写出直线、圆和圆锥曲线的参数方程.

  二、知识归纳总结:

  1.伸缩变换:设点P(x,y)是平面直角坐标系中的任意一点,在变换:yy,(0).的作用下,点P(x,y)对应到点P(x,y),称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

  2.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。

  3.点M的极坐标:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为;以极轴Ox为始边,射线OM为终边的xOM叫做点M的极角,记为。有序数对(,)叫做点M的极坐标,记为M(,).极坐标(,)与(,2k)(kZ)表示同一个点。极点O的坐标为(0,)(R).

  4.若0,则0,规定点(,)与点(,)关于极点对称,即(,)与(,)表示同一点。如果规定0,02,那么除极点外,平面内的点可用唯一的极坐标(,)表示;同时,极坐标(,)表示的点也是唯一确定的。

  5.极坐标与直角坐标的互化:2x2y2,xcos,yysin,tan(x0)x

  6.圆的极坐标方程:在极坐标系中,以极点为圆心,r为半径的圆的极坐标方程是r;在极坐标系中,以C(a,0)(a0)为圆心,a为半径的圆的极坐标方程是2acos;在极坐标系中,以C(a,2)(a0)为圆心,a为半径的圆的极坐标方程是2asin;

  7.在极坐标系中,(0)表示以极点为起点的一条射线;(R)表示过极点的一条直线.在极坐标系中,过点A(a,0)(a0),且垂直于极轴的直线l的极坐标方程是cosa.

  8.参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的'坐标x,y都是某个变数txf(t),并且对于t的每一个允许值,由这个方程所确定的点M(x,y)都在这条yg(t),曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,的函数简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。xarcos,(为参数).

  9.圆(xa)(yb)r的参数方程可表示为ybrsin.xacos,x2y2(为参数).椭圆221(ab0)的参数方程可表示为abybsin.x2px2,2(t为参数).抛物线y2px的参数方程可表示为y2pt.xxotcos,经过点MO(xo,yo),倾斜角为的直线l的参数方程可表示为(t为yyotsin.222参数).

  10.在建立曲线的参数方程时,要注明参数及参数的取值范围。在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.

【高中数学知识点的总结】相关文章:

高中数学的知识点总结04-10

高中数学导数知识点总结02-11

高中数学全部知识点总结02-20

高中数学知识点总结05-15

高中数学知识点总结09-22

高中数学基本的知识点总结09-28

高中数学知识点的总结12-19

高中数学复数知识点总结04-16

高中数学知识点的总结03-13

高中数学知识点总结最新05-06