初中数学知识点总结

时间:2025-05-26 09:01:05 晶敏 知识点总结 我要投稿

【通用】初中数学知识点总结

  总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,快快来写一份总结吧。总结怎么写才不会千篇一律呢?下面是小编精心整理的初中数学知识点总结,仅供参考,希望能够帮助到大家。

【通用】初中数学知识点总结

  统计

  科学记数法:一个大于10的数可以表示成A_10N的形式,其中1小于等于A小于10,N是正整数。

  扇形统计图:①用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。

  各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

  近似数字和有效数字:①测量的结果都是近似的。②利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。③对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。

  平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X(上边一横)。

  加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。

  中位数与众数:①N个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。②一组数据中出现次数最大的那个数据叫做这个组数据的众数。③优劣:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。

  调查:①为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。②从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。③抽样调查只考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间,人力,物力和财力,但其调查结果往往不如普查得到的结果准确。为了获得较为准确的调查结果,抽样时要主要样本的代表性和广泛性。

  频数与频率:①每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。②当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。

  概率

  可能性:①有些事情我们能确定他一定会发生,这些事情称为必然事件;有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;必然事件和不可能事件都是确定的。②有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。③一般来说,不确定事件发生的可能性是有大小的。

  概率:①人们通常用1(或100%)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。②游戏对双方公平是指双方获胜的可能性相同。③必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0〈P(A)〈1。

  对于概率类问题特别要注意以下几点

  01 注意概率、机会、频率的共同点和不同点。

  02 注意题目中隐含求概率的问题。

  03 画树状图及其它方法求概率。

  04 摸球模型题注意放回和不放回。

  05 注意在求概率的问题中寻找替代物,常见的替代物有:球,扑克牌,骰子等。

  统计与概率会在中考中以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查。

  解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等。

  学好数学的方法有哪些

  1学好初中数学课前预习是重点

  数学解题思路和能力的培养主要在于课堂上,所以想要学好初中数学一定要重视数学的学习效率和提前预习。只有提前预习才知道自己哪里不会,这样在课堂上才会注意力集中不走神。同时在初中数学的课上,学生也要紧跟老师的解题思路,注意自己的解题思路和老师的有什么不同。尤其是基础知识和最基本的技能学习,课上数学老师讲完后,初中生要在课后及时复习,争取老师讲完每一节的知识后,学生都不要留下疑问。

  2独立完成初中数学作业

  在完成老师布置的作业时,初中生要学会自己能够独立完成,想要学好初中数学就要勤于思考,千万不能偷懒。平时对于自己弄不懂的题目和解题思路,不要放弃,静下心来认真分析和研究,尽量做到自己能够解决,实在是想不出来在问同学或者老师。对于初中数学的每一个学习阶段,都要学会进行整理和归纳。

  3多做题是学好初中数学的关键

  想要学好初中数学,就要多做数学题。只有学生掌握了各种各样的题型,那么你对于初中数学的解题思路才能够了解,这样通过积累就会使自己的解题思路和思维丰富。在刚开始的时候,可以从最简单的基础题入手,学生最好是以课本上的习题为主,一定要将课本上的习题弄懂,这样打好基础,才会为接下来的做其他类型的题最好准备。然后在开始做一些课外的有难度的习题,目的是为了帮助学生开拓自己的思路,提高自己分析能力。

  4正确的对待初中数学考试

  初中学生数学想要打高分,就要把大部分的精力放在基础知识和解题的基本技能上面,因为在初中数学的考试中,基础题占了试卷的大部分,所以基础知识一定要记牢固。另外还要摆正自己的心态,这样在答初中数学题的时候思路才能清晰。

  N是指什么数学

  数学中的N表示的是集合中的自然数集,这是数学集合中的相关概念,需要掌握的还有:N+表示的是正整数集,Z表示的是集合中的整数集,Q表示的是有理数集,R表示的是实数集。

  三角形的知识点

  1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2、三角形的分类

  3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  7、高线、中线、角平分线的意义和做法

  8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  9、三角形内角和定理:三角形三个内角的和等于180°

  推论1直角三角形的两个锐角互余

  推论2三角形的一个外角等于和它不相邻的两个内角和

  推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半

  10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

  11、三角形外角的性质

  (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

  (2)三角形的一个外角等于与它不相邻的两个内角和;

  (3)三角形的一个外角大于与它不相邻的任一内角;

  (4)三角形的外角和是360°。

  四边形(含多边形)知识点、概念总结

  一、平行四边形的定义、性质及判定

  1、两组对边平行的四边形是平行四边形。

  2、性质:

  (1)平行四边形的对边相等且平行

  (2)平行四边形的对角相等,邻角互补

  (3)平行四边形的对角线互相平分

  3、判定:

  (1)两组对边分别平行的四边形是平行四边形

  (2)两组对边分别相等的四边形是平行四边形

  (3)一组对边平行且相等的四边形是平行四边形

  (4)两组对角分别相等的四边形是平行四边形

  (5)对角线互相平分的四边形是平行四边形

  4、对称性:平行四边形是中心对称图形

  二、矩形的定义、性质及判定

  1、定义:有一个角是直角的平行四边形叫做矩形

  2、性质:矩形的四个角都是直角,矩形的对角线相等

  3、判定:

  (1)有一个角是直角的平行四边形叫做矩形

  (2)有三个角是直角的四边形是矩形

  (3)两条对角线相等的平行四边形是矩形

  4、对称性:矩形是轴对称图形也是中心对称图形。

  三、菱形的定义、性质及判定

  1、定义:有一组邻边相等的平行四边形叫做菱形

  (1)菱形的四条边都相等

  (2)菱形的对角线互相垂直,并且每一条对角线平分一组对角

  (3)菱形被两条对角线分成四个全等的直角三角形

  (4)菱形的面积等于两条对角线长的积的一半

  2、s菱=争6(n、6分别为对角线长)

  3、判定:

  (1)有一组邻边相等的平行四边形叫做菱形

  (2)四条边都相等的四边形是菱形

  (3)对角线互相垂直的平行四边形是菱形

  4、对称性:菱形是轴对称图形也是中心对称图形

  四、正方形定义、性质及判定

  1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形

  2、性质:

  (1)正方形四个角都是直角,四条边都相等

  (2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

  (3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形

  (4)正方形的对角线与边的夹角是45°

  (5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形

  3、判定:

  (1)先判定一个四边形是矩形,再判定出有一组邻边相等

  (2)先判定一个四边形是菱形,再判定出有一个角是直角

  4、对称性:正方形是轴对称图形也是中心对称图形

  五、梯形的定义、等腰梯形的性质及判定

  1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

  2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

  3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形

  4、对称性:等腰梯形是轴对称图形

  六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。

  七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。

  八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。

  九、多边形

  1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

  2、多边形的内角:多边形相邻两边组成的角叫做它的内角。

  3、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

  4、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

  5、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

  6、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

  7、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

  8、公式与性质

  多边形内角和公式:n边形的内角和等于(n-2)·180°

  9、多边形外角和定理:

  (1)n边形外角和等于n·180°-(n-2)·180°=360°

  (2)边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

  10、多边形对角线的条数:

  (1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形

  (2)n边形共有n(n-3)/2条对角线

  圆知识点、概念总结

  1、不在同一直线上的三点确定一个圆。

  2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  推论1①(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  推论2圆的两条平行弦所夹的弧相等

  3、圆是以圆心为对称中心的中心对称图形

  4、圆是定点的距离等于定长的点的集合

  5、圆的内部可以看作是圆心的距离小于半径的点的集合

  6、圆的外部可以看作是圆心的距离大于半径的点的集合

  7、同圆或等圆的半径相等

  8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

  11、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

  12、①直线L和⊙O相交d

  ②直线L和⊙O相切d=r

  ③直线L和⊙O相离d>r

  13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

  14、切线的性质定理:圆的切线垂直于经过切点的半径

  15、推论1经过圆心且垂直于切线的直线必经过切点

  16、推论2经过切点且垂直于切线的直线必经过圆心

  17、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

  18、圆的外切四边形的两组对边的和相等,外角等于内对角

  19、如果两个圆相切,那么切点一定在连心线上

  20、①两圆外离d>R+r

  ②两圆外切d=R+r

  ③两圆相交R-rr)

  ④两圆内切d=R-r(R>r)⑤两圆内含dr)

  21、定理:相交两圆的连心线垂直平分两圆的公共弦

  22、定理:把圆分成n(n≥3):

  (1)依次连结各分点所得的多边形是这个圆的内接正n边形

  (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  23、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  24、正n边形的每个内角都等于(n-2)×180°/n

  25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

  26、正n边形的面积Sn=pnrn/2p表示正n边形的周长

  27、正三角形面积√3a/4a表示边长

  28、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

  29、弧长计算公式:L=n兀R/180

  30、扇形面积公式:S扇形=n兀R^2/360=LR/2

  31、内公切线长=d-(R-r)外公切线长=d-(R+r)

  32、定理:一条弧所对的圆周角等于它所对的圆心角的一半

  33、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  34、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

  35、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

  平面直角坐标系:

  在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成

  对于平面直角坐标系的构成内容,下面我们一起来学习哦。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  初中数学知识点:点的坐标的性质

  下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  初中数学知识点:因式分解

  下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

  因式分解定义

  把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素

  ①结果必须是整式

  ②结果必须是积的形式

  ③结果是等式

  ④因式分解与整式乘法的关系:m(a+b+c)

  公因式:

  一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法

  ①系数是整数时取各项最大公约数。

  ②相同字母取最低次幂

  ③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。

  ②确定商式

  ③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

  通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

  动点与函数图象问题常见的四种类型:

  1、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.

  2、四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.

  3、圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象.

  4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象.

  图形运动与函数图象问题常见的三种类型:

  1、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

  2、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

  3、多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

  动点问题常见的四种类型:

  1、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.

  2、四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系.

  3、圆中的动点问题:动点沿圆周运动,探究构成的新图形的边角等关系.

  4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.

  总结反思:

  本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,一次函数的解析式,三角形全等的判定和性质,等腰直角三角形的性质,平行线的性质等,数形结合思想的应用是解题的关键.

  解答动态性问题通常是对几何图形运动过程有一个完整、清晰的认识,发掘“动”与“静”的内在联系,寻求变化规律,从变中求不变,从而达到解题目的

  解答函数的图象问题一般遵循的步骤:

  1、根据自变量的取值范围对函数进行分段.

  2、求出每段的解析式.

  3、由每段的解析式确定每段图象的形状.

  对于用图象描述分段函数的实际问题,要抓住以下几点:

  1、自变量变化而函数值不变化的图象用水平线段表示.

  2、自变量变化函数值也变化的增减变化情况.

  3、函数图象的最低点和最高点.

  古典概率与几何概率

  1、基本事件特点:任何两个基本事件是互斥的;任何事件(除不可能事件)都可以表示成基本事件的和。

  2、古典概率:具有下列两个特征的随机试验的数学模型称为古典概型:

  (1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。

  P(A)A中所含样本点的个数nA中所含样本点的个数n.

  3、几何概率:如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A的概率为几何概率。几何概率具有无限性和等可能性。

  4、古典概率和几何概率的基本事件都是等可能的;但古典概率基本事件的个数是有限的,几何概率的是无限个的。

  1、必然事件、不可能事件、随机事件的区别

  2、概率

  一般地,在大量重复试验中,如果事件A发生的频率 会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)= p.

  注意:(1)概率是随机事件发生的可能性的大小的数量反映。

  (2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同。

  3、求概率的方法

  (1)用列举法求概率(列表法、画树形图法)

  (2)用频率估计概率:一大面,可用大量重复试验中事件发生频率来估计事件发生的概率。另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同。

  初中数学知识点总结 1

  一、旋转

  1、定义

  把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

  2、性质

  (1)对应点到旋转中心的距离相等。

  (2)对应点与旋转中心所连线段的夹角等于旋转角。

  二、中心对称

  1、定义

  把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

  2、性质

  (1)关于中心对称的两个图形是全等形。

  (2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

  (3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

  3、判定

  如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

  4、中心对称图形

  把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

  考点五、坐标系中对称点的特征(3分)

  1、关于原点对称的点的特征

  两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(—x,—y)

  2、关于x轴对称的点的特征

  两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,—y)

  3、关于y轴对称的点的特征

  两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(—x,y)

  数学学习中常见问题分析

  大部分学生在学习中或多或少的都会积累一些问题,这些问题平时我们可能不是很在意,那么到了初二后就会突显出来。首先新生在学习数学的时候常遇到的就是对于知识点的理解不到位,还停留在一知半解的层次上面。有的学生在解答数学题的时候始终不能把握解题技巧,也就是说学生缺乏对待数学的举一反三能力。

  还有的学生在解答数学题时效率太低,无法再规定的时间内完成解题,对于初中的考试节奏还没办法适应。一些学生还没有养成一个总结归纳的习惯,不会归纳知识点,不会归纳错题。这些都是导致学生学不好数学的原因。

  常见面积定理

  1、一个图形的面积等于它的各部分面积的和;

  2、两个全等图形的面积相等;

  3、等底等高的三角形、平行四边形、梯形(梯形等底应理解为两底的和相等)的面积相等;

  4、等底(或等高)的三角形、平行四边形、梯形的面积比等于其所对应的高(或底)的比;

  5、相似三角形的面积比等于相似比的平方;

  6、等角或补角的三角形面积的比,等于夹等角或补角的两边的乘积的比;等角的平行四边形面积比等于夹等角的两边乘积的比;

  7、任何一条曲线都可以用一个函数y=f(x)来表示,那么,这条曲线所围成的面积就是对X求积分。

  一、旋转

  1、定义

  把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

  2、性质

  (1)对应点到旋转中心的距离相等。

  (2)对应点与旋转中心所连线段的夹角等于旋转角。

  二、中心对称

  1、定义

  把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

  2、性质

  (1)关于中心对称的两个图形是全等形。

  (2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

  (3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

  3、判定

  如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

  4、中心对称图形

  把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

  考点五、坐标系中对称点的特征(3分)

  1、关于原点对称的点的特征

  两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(—x,—y)

  2、关于x轴对称的点的特征

  两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,—y)

  3、关于y轴对称的点的特征

  两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(—x,y)

  数学学习中常见问题分析

  大部分学生在学习中或多或少的都会积累一些问题,这些问题平时我们可能不是很在意,那么到了初二后就会突显出来。首先新生在学习数学的时候常遇到的就是对于知识点的理解不到位,还停留在一知半解的'层次上面。有的学生在解答数学题的时候始终不能把握解题技巧,也就是说学生缺乏对待数学的举一反三能力。

  还有的学生在解答数学题时效率太低,无法再规定的时间内完成解题,对于初中的考试节奏还没办法适应。一些学生还没有养成一个总结归纳的习惯,不会归纳知识点,不会归纳错题。这些都是导致学生学不好数学的原因。

  常见面积定理

  1、一个图形的面积等于它的各部分面积的和;

  2、两个全等图形的面积相等;

  3、等底等高的三角形、平行四边形、梯形(梯形等底应理解为两底的和相等)的面积相等;

  4、等底(或等高)的三角形、平行四边形、梯形的面积比等于其所对应的高(或底)的比;

  5、相似三角形的面积比等于相似比的平方;

  6、等角或补角的三角形面积的比,等于夹等角或补角的两边的乘积的比;等角的平行四边形面积比等于夹等角的两边乘积的比;

  7、任何一条曲线都可以用一个函数y=f(x)来表示,那么,这条曲线所围成的面积就是对X求积分。

  初中数学必考知识点

  一、平行四边形的定义、性质及判定

  1、两组对边平行的四边形是平行四边形。

  2、性质:

  (1)平行四边形的对边相等且平行

  (2)平行四边形的对角相等,邻角互补

  (3)平行四边形的对角线互相平分

  3、判定:

  (1)两组对边分别平行的四边形是平行四边形

  (2)两组对边分别相等的四边形是平行四边形

  (3)一组对边平行且相等的四边形是平行四边形

  (4)两组对角分别相等的四边形是平行四边形

  (5)对角线互相平分的四边形是平行四边形

  4、对称性:平行四边形是中心对称图形

  二、矩形的定义、性质及判定

  1、定义:有一个角是直角的平行四边形叫做矩形

  2、性质:矩形的四个角都是直角,矩形的对角线相等

  3、判定:

  (1)有一个角是直角的平行四边形叫做矩形

  (2)有三个角是直角的四边形是矩形

  (3)两条对角线相等的平行四边形是矩形

  4、对称性:矩形是轴对称图形也是中心对称图形。

  三、菱形的定义、性质及判定

  1、定义:有一组邻边相等的平行四边形叫做菱形

  (1)菱形的四条边都相等

  (2)菱形的对角线互相垂直,并且每一条对角线平分一组对角

  (3)菱形被两条对角线分成四个全等的直角三角形

  (4)菱形的面积等于两条对角线长的积的一半

  2、s菱=争6(n、6分别为对角线长)

  3、判定:

  (1)有一组邻边相等的平行四边形叫做菱形

  (2)四条边都相等的四边形是菱形

  (3)对角线互相垂直的平行四边形是菱形

  4、对称性:菱形是轴对称图形也是中心对称图形

  初中数学知识点

  1、不在同一直线上的三点确定一个圆。

  2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  推论1①(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  推论2圆的两条平行弦所夹的弧相等

  3、圆是以圆心为对称中心的中心对称图形

  4、圆是定点的距离等于定长的点的集合

  5、圆的内部可以看作是圆心的距离小于半径的点的集合

  6、圆的外部可以看作是圆心的距离大于半径的点的集合

  7、同圆或等圆的半径相等

  8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

  11、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

  12、①直线L和⊙O相交d

  ②直线L和⊙O相切d=r

  ③直线L和⊙O相离d>r

  13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

  14、切线的性质定理:圆的切线垂直于经过切点的半径

  15、推论1经过圆心且垂直于切线的直线必经过切点

  16、推论2经过切点且垂直于切线的直线必经过圆心

  17、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

  18、圆的外切四边形的两组对边的和相等,外角等于内对角

  19、如果两个圆相切,那么切点一定在连心线上

  20、①两圆外离d>R+r

  ②两圆外切d=R+r

  ③两圆相交R-rr)

  ④两圆内切d=R-r(R>r)⑤两圆内含dr)

  初中数学知识点总结

  1.有理数:

  (1)凡能写成形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;p不是有理数;

  (2)有理数的分类:① ②

  2.数轴:

  数轴是规定了原点、正方向、单位长度的一条直线。

  3.相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)相反数的和为0?a+b=0?a、b互为相反数。

  4.绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2)绝对值可表示为:或;绝对值的问题经常分类讨论;

  5.有理数比大小:

  (1)正数的绝对值越大,这个数越大;

  (2)正数永远比0大,负数永远比0小;

  (3)正数大于一切负数;

  (4)两个负数比大小,绝对值大的反而小

  (5)数轴上的两个数,右边的数总比左边的数大;

  (6)大数—小数> 0,小数—大数< 0。

  6.互为倒数:

  乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。

  7.有理数加法法则:

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数。

  初中数学知识点梳理

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成

  对于平面直角坐标系的构成内容,下面我们一起来学习哦。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  初中数学知识点归纳

  1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2、三角形的分类

  3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  7、高线、中线、角平分线的意义和做法

  8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  9、三角形内角和定理:三角形三个内角的和等于180°

  推论1直角三角形的两个锐角互余

  推论2三角形的一个外角等于和它不相邻的两个内角和

  推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半

  10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

  11、三角形外角的性质

  (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

  (2)三角形的一个外角等于与它不相邻的两个内角和;

  (3)三角形的一个外角大于与它不相邻的任一内角;

  (4)三角形的外角和是360°。

【初中数学知识点总结】相关文章:

初中数学的知识点总结03-11

初中数学的知识点总结09-19

初中数学函数知识点总结04-12

初中数学必考知识点总结02-22

初中数学必备知识点总结03-11

数学初中全部知识点总结03-06

初中数学知识点总结10-24

初中数学知识点总结06-24

初中数学的知识点总结大全12-09

初中数学知识点总结03-07