- 三角形全等的判定说课稿 推荐度:
- 相关推荐
三角形全等的判定说课稿(通用10篇)
作为一名优秀的教育工作者,往往需要进行说课稿编写工作,说课稿有助于提高教师的语言表达能力。那么说课稿应该怎么写才合适呢?下面是小编为大家整理的三角形全等的判定说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。
三角形全等的判定说课稿 1
一、教材分析:
本节的教学内容是第13章第2节的第5小节,在本节课之前,学生已经进行了“边角边”、“角边角”、“角角边”的学习探索。三角形全等的证明既是几何推理证明的起始部分,对学生的后续学习起着铺垫作用,是后面等腰三角形、四边形与特殊四边形的学习基础,同时也是培养提高学生逻辑思维能力的良好素材,对学生的演绎推理能力锻炼有非常重要的作用。
二、学生情况分析
在本节学习之前,学生已经经历了一周的推理证明的训练,所以学生的证明能力已经有所提升,解题思路也有所凝练,相对而言储备了一定的方法和技巧,但是对于辅助线的'引用练习的不是很多,因此学生还没有什么经验。
三、教学目标、重点和难点
(一)教学目标:
1、让学生通过实践操作探索出“边边边”的基本事实,并掌握其推理格式。
2、能够应用“边边边”的基本事实解决实际问题。
(二)教学重点:
掌握“边边边”的基本事实。
(三)教学难点:
灵活运用“边边边”解决问题。
四、教法学法
(一)教法
在本节课的课堂教学中我采用讲授、讨论式、演示、互动式、体验式、操作式、谈话、练习等教学方法,凸显学生的主体地位和教师的主导地位,突出课标的四性<实践性、趣味性、自主性、开放性>,适时启发点拨引导,适当采用多媒体教学手段,帮助学生更好地掌握知识、熟练技能、培养学生的能力,
(二)学法
我采用自主、探究、合作的学习方法,让学生在动手操作、动脑思考、交流讨论的过程中学习本节课的知识、掌握方法、提高技能、形成能力;达到体验中感悟情感、态度、价值观;活动中归纳知识;参与中培养能力;合作中学会学习。
五、教学过程
复习引入:复习已经学过的全等三角形的三种判定方法,为新知做好铺垫;然后引入新课,激发学生的学习兴趣。
明确目标:简洁明了的学习目标使学生在开始学习之初就能够明确目标,明确努力的方向,做到有的放矢。
定向学习:在整个自学过程中,我注意用语言引导学生,使其把握住主旨目标,充分利用教材和导学提纲完成自学。由于上一阶段的学习和练习,学生储备了一定的经验,所以要自主完成例1应该是不成问题,而且基础训练的内容学生也能比较容易完成。
精讲点拨:在“边边边”的简单应用的基础上,再稍加拓展。
巩固训练:在此环节中我着重加入了对辅助线的引导渗透,对学生的思维能力进行拓展、提升,以确保让尖子生吃的饱。
六、课后反思
在教学过程中,我注重调整了自己的“角色”,因为学生已经结合教材进行了自学,所以在课堂上,更应实现学生的自主,故课堂即是学生的演练场,教师就针对学生出现的问题进行点拨、指导,对于共性问题重点提示,引起全体同学重视,从而加深印象。正所谓问题即课题,有疑、有错才有讲解!本节课的教学,按照本人的设计非常顺畅的进行下去了,学生对于我在三角形全等这一部分知识的处理方式,都能够适应、接受,这也反映出这样的教学方式对于学生新知识的接受还是比较适合的。教无定法,不同的知识、不同的学生,可能要采用不同教学方式,需要我们因课因人灵活选择。
三角形全等的判定说课稿 2
各位老师:
你们好!今天我要为大家说的课题是《全等三角形的判定》
首先,我对本节教材进行一些分析:
一、教材分析(说教材):
1、教材所处的地位和作用:
这一节内容是初中《数学》人教版教材,八年级上册第十一章第二节的内容。在此之前学生已学习了全等三角形的定义、性质,对全等三角形有了一定的了解,这为过渡到本节的深入学习起着铺垫作用。本节内容是在本章内容中,占据重要的的地位,以及为其他学科和今后的几何学习打下基础。
2、教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)知识目标:
①对全等、对顶角、对应边、对应角的定义,能够熟练掌握,并达到更深一层的理解。
②能够利用尺规画出全等的三角形,学生具有一定的作图能力。
③掌握并理解三角形全等判定定理中的SSS和SAS。
④能够运用SSS和SAS判定定理判定三角形是否全等,利用三角形全等解决一些实际问题。⑤通过教学培养学生分析问题,读图分析,解决实际问题,培养学生运用知识的能力,培养学生加强理论联系实际的能力。
(3)情感目标:通过的师生共同摸索判断全等三角形全等的方法,激发学生学习兴趣。
3、重点、难点:①掌握并理解三角形全等的判定定理
②运用定理判定三角形全等,利用全等三角形解决实际的问题和几何题
二、教学策略(说教法)
1、教学手段:为了让学生充分理解和掌握三角形判定定理,突破难点,我在教学过程中,采用两探究引出定理,两个运用定理的例子,来进行教学。探究中主要用尺规作全等三角形的方法中引出全等三角形的条件,进而得出定理。这样学生就更容易理解和掌握定理。在用两个练习巩固知识。
2、教学方法及其理论依据:为了调动学生学习的积极性,充分体现课堂教学的主体性,我采用自学、议论、引导教学法,以学生为主体,老师为主导,引导学生运用观察、分析、概括的方法学习这部分内容,在整个教学过程当中,贯穿以学生为主体的原则,充分鼓励和表扬同学。
3、学情分析:(说学法)
(1)、八年级学生的思维已逐步从直观的形象思维为主向抽象的`逻辑思维过渡,而且具备一定的信息收集的能力。
(2)、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。
(3)、学生在在讨论学习中体验学习的快乐。讨论交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。
4、教学程序:(说教学过程)
(1)复习回顾上节课内容:
定义:能够完全重合的三角形叫做全等三角形,重合的边叫对应边,重合的角叫对应角。
性质:全等三角形对应边和对应角相等
三角形全等的性质让我们知道AB=A’B’ BC=B’C’ AC=A’C’∠A=∠A’ ∠B=∠B’ ∠C=∠C’,满足六个条件中这一部分,能确定△ABC≌△A’B’C’,先让学生画出△ABD,再让学生在画△A’B’C’过程中明白,确定一个条件或两个条件下不能确定两个三角形全等,通过适当时间的引导探究得出得出,当AB=A’B’ BC=B’C’ AC=A’C’时,只能画出一个A’B’C’满足条件,于是得出定理:三个对应边相等的两个三角形全等,简写成SSS。
(3)得出定理,我通过讲解简单的例题,让学生懂得定理SSS定理的运用。
(4)探究2:
得出:定理两边和它们的夹角对应相等的两个三角形全等,简写成SAS
(5)通过解决生活实例,讲解三角形全等的运用
(6)练习:在适当的时间过后给出参考答案,并进行简单的讲解。
(7)小结:通过本节课的学习,你有哪些收获?
(8)我的板书:我会把复习内容和这节课的定理用红色粉笔标明在左边,中间板书探究和例题的内容,右边板书练习的参考答案。
(9)布置作业:P15,第1,3题,预习P10—P12的内容。
三角形全等的判定说课稿 3
一、教材分析
(一)、教材的地位与作用
HL定理是学生学习一般三角形全等的判定之后的一节内容,主要让学生通过对直角三角形全等的判定,让学生体会其特殊性,为学习等腰三角形的性质和直角三角形中30度的角所对的直角边与斜边的关系作铺垫。
(二)、教学目标
1、会已知直角三角形的一条直角边和斜边,作直角三角形
2、掌握直角三角形全等的判定方法----“HL”定理
3、能利用全等直角三角形的判定方法“HL”定理解决简单实际问题
4、经历探索直角三角形全等条件的过程,体会分析问题的方法。积累数学活动的经验。
(三)、教学重难点:
重点:直角三角形全等的判定方法
难点:运用全等直角三角形的判定方法“HL”解决问题
二、说教学方法:自主学习、合作讨论、交流展示
通过动手操作,在合作中交流,比较中共同发现判定直角三角形全等的另一种特殊方法“HL”,通过例题和练习巩固这种判定方法。
三、说教学过程
(一)、创设情境,引入新课
1、复习思考
(1)、判定两个三角形全等的方法
(2)、如图,Rt△ABC中,直角边是AC、BC,斜边是AB
设计意图:通过简单的复习帮助学生回顾旧知识,为本节课内容做铺垫。
2、新课引入(情境)
(课件显示)舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量。
(1)你能帮他想个办法吗?
方法一:测量斜边和一个对应的锐角.(AAS)
方法二:测量没遮住的一条直角边和一个对应的锐角.(ASA)或(AAS)
……
学生活动:能从已经学过的判定两个三角形全等的方法入手,相互交流。
教师活动:引导学生发现,对有困难的同学提供帮助。
设计意图:发挥学生的课堂主动性及参与课堂的积极性,由于问题不难,学生参与会比较广。
⑵如果他只带了一个卷尺,能完成这个任务吗?
设计意图:由于学生能用到的工具减少了,学生会进入沉思,自然而然会进入新知识的探索中,吊足学生的胃口,集中学生的注意力,学生乐于学习。
师:工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗?
设计意图:教师提供方案,挑战学生已有的知识,激发学生知识的火花,使其迫不及待的想来发现新知识。
下面让我们一起来验证这个结论。
(二)、合作交流,探索新知
1、探究:如果两个直角三角形满足斜边和一条直角边对应相等,这两个直角三角形全等吗?
(1)动手试一试。利用尺规作一个RtΔABC,∠C=90°,AB=5cm,CB=3cm.
按照步骤做一做:
①作∠MCN=90°
②在射线CM上截取线段CB=3cm
③以B为圆心,5cm为半径画弧,交射线CM于点A;
④连接AB.△ABC就是所求作的三角形
学生活动:按老师的要求画出图形
教师活动:规范作图,及时解决学生作图时遇到的困难
设计意图:培养学生的动手操作能力
探索交流
(2)剪下这个三角形,和其他同学所作的'三角形进行比较,它们能重合吗?
(3)交流之后,你发现了什么?
学生交流,发现。已知什么前提,满足什么条件,得到什么结论。
(4)归纳;由上面的画图和实验可以得到判定两个直角三角形全等的一个方法
定理:斜边和一直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)
(5)用数学语言表述上面的判定方法
∵∠B=∠E=90°
∴在Rt△ABC和Rt△DEF中
或
∴Rt△ABC≌Rt△DEF(HL)
教师规范板书,提醒学生规范书写。
(6)直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法SAS、ASA、AAS、SSS还有直角三角形特殊的判定方法“HL”
设计意图:教师适时小结,能理顺学生的思路,从而形成学生自己的知识。
(7)练习:判断满足下列条件的两个三角形是否全等?为什么?
①一个锐角及这个锐角的对边对应相等的两个直角三角形.(全等,AAS)
②一个锐角及这个锐角相邻的直角边对应相等的两个直角三角形(全等,ASA)
③两直角边对应相等的两个直角三角形(全等,SAS)
④有两边对应相等的两个直角三角形.
分三种情况考虑:两个直角边对应相等,全等(SAS);一条直角边和斜边对应相等,全等(HL);一条直角边对应相等,第一个三角形的斜边与第二个三角形的直角边对应相等则不全等。
设计意图:趁热打铁,体会直角三角形全等的5种判定方法,练习④体现数学分类讨论思想,让学生进一步感受数学语言的严谨性及数学思维的严密性。
(三)、尝试应用,解决问题
例1、已知:如图∠BAC=∠CDB=90°,AC=DB求证:AB=DC
分析:要说明AB=DC,由于AB和DC分别在两个三角形中,只要他们所在的两个三角形全等就可以了,而这两个三角形是直角三角形,题目给了我们一条直角边相等,SAS、ASA、AAS、SSS都用不上,自然想到用HL定理来做,可还差一条斜边对应相等,经过观察发现,这两个三角形的斜边是公共边
证明:∵∠BAC=∠CDB=90°
∴△BAC,△CDB都是直角三角形
在Rt△BAC和Rt△CDB中
∵AC=DB
BC=CB
∴Rt△ABC≌Rt△DCB(HL)
∴AB=DC(全等三角形的对应边相等)
(四)、当堂检测,及时反馈
1、如图,AC=AD,∠C,∠D是直角,将上述条件标注在图中,
你能说明BC与BD相等吗?
2、如图,两根长度为10米的绳子,一端系在旗杆上,
另一端分别固定在地面两个木桩上,
两个木桩离旗杆底部的距离相等吗?请说明你的理由。
(五)、收获分享,感悟困惑
学生谈谈本节课的收获,以及还有哪些疑问。
一般三角形全等的判定方法有SAS,ASA,AAS,SSS
直角三角形全等的判定方法有SAS,ASA,AAS,SSS,外加HL
灵活运用各种方法证明直角三角形全等
(六)、课后作业,应用提高
课本109页练习1、2、3
板书设计
14.2.5两个直角三角形全等的判定
∵∠B=∠E=90°
∴在Rt△ABC和Rt△DEF中
或
∴Rt△ABC≌Rt△DEF(HL)
投影区
SAS、ASA、AAS、SSS
例证明:∵∠BAC=∠CDB=90°
∴△BAC,△CDB都是直角三角形
在Rt△BAC和Rt△CDB中
∵AC=DB
BC=CB
∴Rt△ABC≌Rt△DCB(HL)
∴AB=DC
三角形全等的判定说课稿 4
一、教材分析:
1、教材地位及学情
本课落实了课程标准中的“掌握利用“边边边”证明两个三角形全等”的要求,主要讲的是如何利用“边边边(SSS)”的条件证明两个三角形全等。它是在学生学习了全等三角形的概念及性质后展开的,是证明两个三角形全等的重要方法之一,也是证明线段相等、角相等的重要依据,是学生学习几何部分重要的切入点之一。
因为八年级学生观察、分析问题能力较弱,他们还不具备独立系统地推理论证几何问题的能力,思维具有局限性,考虑问题还不够全面。在学习过程中,老师充分发挥主导作用,适时点拨、引导,尽可能调动所有学生的积极性,主动参与到合作与探索中来,使学生在与他人合作中获取新知。
2、教学重点、难点:
综合大纲要求及教材内容特点,本节课我将“用三角形“边边边”的条件进行有条理思考并进行简单的推理。”确定为教学重点,将“三角形全等条件的探索过程”确定为教学难点。
3、教学目标:根据新课程标准,为了突出重点突破难点,我制定了以下四维教学目标:
(1)知识技能:
①掌握“边边边”条件的内容
②能初步应用“边边边”条件判断两个三角形全等
(2)数学思考:使学生经历探索三角形全等的条件的过程,体验用操作、归纳得出数学结论的过程
(3)解决问题:会用“边边边”条件证明两个三角形全等
(4)情感态度:通过探究三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想、乐于探究的良好品质以及发现问题的能力
二、教法分析
课程标准倡导“创造性的使用教材,优化教学过程,并强调与生活实际相联系。”根据教学内容和教学目标我选用了以下的教学方法。
1、问题引入法
我将本课的知识点融入到一个个探究问题中,环环相扣,激发学生参与和思考的热情。培养学生的自学能力、数学思维能力以及应变能力。
2、引导学生合作
结合教材设置探究问题,组织学生分组讨论、合作探究,促使学生在合作和分享中,自主探索和独立思考中提升自己。培养学生的团结协作的精神。
在整个教学过程中,我始终要为学生创始一种宽松、民主、和谐的学习氛围,并给予鼓励性的评价,让学生的思维走进课堂,走进数学。
3.多媒体演示
在本课中我运用了多媒体进行直观演示,增强教学的直观性,使学生获得感性认识,激发学生的学习兴趣。
三、学法分析
课程标准要求“从学生自身的生活经验出发,以学生能够接受、乐于参与和能够促进思考、拓展体验等方式创造一个生机盎然的学习空间。”针对本节教材特点和教学目的,在整个的教学过程中我强调自主探索,注重小组合作交流,让学生的学习在探究的.过程中进行,使他们在自主探究的过程中理解和掌握三角形全等的条件,提高学生探究、发现问题的能力,同时注意精选习题,做多种形式的练习,在教学中力争把学生思维展开,注重培养学生的数学思维能力。
四、教学流程
关于本节课的教学过程我设计的如下五个节:环节一:创设情境,导入新课;环节二:师生互动,探索新知;环节三:题组跟进,巩固新知;环节四:反思小结,体验收获;环节五:课堂作业
环节一:创设情境,导入新课;
学校有两块三角形装饰板如下图,小明想知道这两块板是否全等,这两块板很重又固定在墙上,小明只有刻度尺,你能帮小明想个办法吗?
设计意图:通过同学们身边的事例来启发学生,带着问题展开学习,激发学生学习兴趣和探索欲望,让学生感受数学源于生活,又服务于生活。
教学效果:这个问题马上调动了学生的学习积极性,学习气氛高涨,学生带着这个问题很快进入新的课堂。
环节二:师生互动,探索新知
(一)温故知新
已知:△ABC≌△DEF
找出其中相等的边和角
设计意图:利用多媒体带领学生回顾全等三角形定义及性质,同时引出问题,为探究新知做好准备。
教学效果:因为上节课内容简单容易理解,学生很积极的抢答这个问题,学习效果非常好,很自然地就过渡到探究问题上。
(二)尝试发现,探索新知
探究一:先任意画一个△ABC。再画一个△A′B′C′,使△ABC与△A′B′C′满足上述六个条件中的一个(一边或一角分别相等)或两个(两边、一边一角或两角分别相等)。你画出的△ABC与△A′B′C′一定全等吗?
设计意图:学生利用自己手中的三角形纸板探索、研究,分小组进行讨论交流,受问题启发,从最少条件开始考虑,一个条件、两个条件、三个条件……经过学生逐步分析,各种情况渐渐明朗,进行交流,予以汇总、归纳。对学生渗透分类讨论的数学思想。
教学效果:学生讨论激烈,为一种情况争得面红耳赤,真正体会到与人合作其乐无穷!也真正落实了课标中的数学分类讨论思想。
探究二:先任意画出一个△ABC,再画出△A′B′C′,使A′B′=AB,B′C′=BC,A′C′=AC.把画好△A′B′C′的剪下,放到△ABC上,它们全等吗?
设计意图:让学生动手实践,以学生的探求活动为主体,让学生参与、经历、体验、感悟“三角形全等条件”的形成与发展过程,并能概括说明得出结论。
教学效果:学生更加积极的活动,因为是自己实践得出的结论,有些同学很是兴奋,但有些同学没操作好,很是沮丧。课堂活跃,学生主动参与,每个学生的动手能力都得到了提高。
接下来是例题探究,由于学生刚开始学习全等三角形的证明,对三角形全等的书写格式还不熟悉,所以我设计了一个填空题作为铺垫,让学生自己尝试写出证明过程,我再重点板书解题过程,还强调了三角形全等的书写格式以及应注意的问题。本环节的设置使学生学会用“边边边”证明两个三角形全等,重点培养了学生独立系统地推理论证几何问题的能力。
教学效果:学生大声的和我一起归纳、齐声朗读解题过程!学生初步掌握了用符号语言证明两个三角形全等。
环节三:题组跟进,巩固新知
设计意图:练习一:学生体会公共边的应用,加强学生的观察能力;练习二:知识性总结,学生能够准确书写符号语言,为几何题的合情推理做好语言准备。练习三是一道开放性试题,让学生体验数学的发散思维。练习四是将实际问题抽象为数学问题的建模过程,锻炼学生从数学的视角来审视问题。
教学效果:这个环节的设置,为学生自主学习提供了空间,小组内自我评析,我给各小组打分评价,用小组量化评比的方式激励学生。错题自我改正后再师徒互教。学生学习积极性高,热情高涨。
为了突破难点我又设计了一道提高题,学生读题、思考、再小组交流得出各自的解题过程,让学生学会添加辅助线解决问题,实现四边形到三角形的转化。一题多解,变换角度对学生进行训练,从不同角度对问题进行分析,考虑问题全面。
教学效果:学生很快进入了思考,但很多学生不能解决这个问题,当别的同学提出自己的意见时,脸上露出了喜悦之情!最后在同学们共同努力下各种解题方法一一呈现!学生们的数学思考能力得到提高!
环节四:课堂小结
设计意图:学生在教师的指导下小组内交流,回顾本节课对知识研究的探索过程,小结方法和结论,提炼数学思想,掌握数学规律。
教学效果:学生积极发言,总结自己所学的内容,都由衷的感到喜悦和自豪!
环节五:课堂作业
针对不同层次的学生我设计了分层作业,有必做题和选作题,让不同层次的同学都能完成作业,体会到学习的乐趣!
五、教学评价:
通过本课的教学实践与反思我认为本课的亮点是:
1.本节课自始至终贯彻了以学生为“主体”,教师为“主导”小组合作的教学理念,是一节师生“双赢”的课堂,学生学得“精彩”,老师教的“享受”,学生成为学习的主人,真正把课堂回归给学生!
2.整节课形式活泼多样,学习气氛轻松、活泼而又团结互助,学生参与其中,乐在其中。
今后努力方向:
1、提高对课堂活动的控制,在小组讨论和展示的环节,把握好时间。
2、加强对学生发言的评价和引导。
通过这节课的教学实践我从备课环节到上课流程细微处的查缺补漏我深刻感受到自己的缺失与不足也看到自己的进步,从而更激励我用心钻研教材,留心教学环节,耐心引导学生。
三角形全等的判定说课稿 5
一、教材分析:
本节的教学内容是第13章第2节的第5小节,在本节课之前,学生已经进行了“边角边”、“角边角”、“角角边”的学习探索。三角形全等的证明既是几何推理证明的起始部分,对学生的后续学习起着铺垫作用,是后面等腰三角形、四边形与特殊四边形的学习基础,同时也是培养提高学生逻辑思维能力的良好素材,对学生的演绎推理能力锻炼有非常重要的作用。
二、学生情况分析
在本节学习之前,学生已经经历了一周的推理证明的训练,所以学生的证明能力已经有所提升,解题思路也有所凝练,相对而言储备了一定的方法和技巧,但是对于辅助线的引用练习的不是很多,因此学生还没有什么经验。
三、教学目标、重点和难点
(一)教学目标:
1、让学生通过实践操作探索出“边边边”的基本事实,并掌握其推理格式。
2、能够应用“边边边”的基本事实解决实际问题。
(二)教学重点:
掌握“边边边”的基本事实。
(三)教学难点:
灵活运用“边边边”解决问题。
四、教法学法
(一)教法
在本节课的课堂教学中我采用讲授、讨论式、演示、互动式、体验式、操作式、谈话、练习等教学方法,凸显学生的主体地位和教师的主导地位,突出课标的四性<实践性、趣味性、自主性、开放性>,适时启发点拨引导,适当采用多媒体教学手段,帮助学生更好地掌握知识、熟练技能、培养学生的能力,
(二)学法
我采用自主、探究、合作的学习方法,让学生在动手操作、动脑思考、交流讨论的过程中学习本节课的知识、掌握方法、提高技能、形成能力;达到体验中感悟情感、态度、价值观;活动中归纳知识;参与中培养能力;合作中学会学习。
五、教学过程
复习引入:复习已经学过的全等三角形的三种判定方法,为新知做好铺垫;然后引入新课,激发学生的学习兴趣。
明确目标:简洁明了的学习目标使学生在开始学习之初就能够明确目标,明确努力的方向,做到有的放矢。
定向学习:在整个自学过程中,我注意用语言引导学生,使其把握住主旨目标,充分利用教材和导学提纲完成自学。由于上一阶段的学习和练习,学生储备了一定的经验,所以要自主完成例1应该是不成问题,而且基础训练的内容学生也能比较容易完成。
精讲点拨:在“边边边”的简单应用的基础上,再稍加拓展。
巩固训练:在此环节中我着重加入了对辅助线的.引导渗透,对学生的思维能力进行拓展、提升,以确保让尖子生吃的饱。
六、课后反思
在教学过程中,我注重调整了自己的“角色”,因为学生已经结合教材进行了自学,所以在课堂上,更应实现学生的自主,故课堂即是学生的演练场,教师就针对学生出现的问题进行点拨、指导,对于共性问题重点提示,引起全体同学重视,从而加深印象。正所谓问题即课题,有疑、有错才有讲解!本节课的教学,按照本人的设计非常顺畅的进行下去了,学生对于我在三角形全等这一部分知识的处理方式,都能够适应、接受,这也反映出这样的教学方式对于学生新知识的接受还是比较适合的。教无定法,不同的知识、不同的学生,可能要采用不同教学方式,需要我们因课因人灵活选择。
三角形全等的判定说课稿 6
【教学目标】
1.使学生理 解边边边公理的 内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;
2.继续培养学生画图、实 验,发现新知识的能力.
【重点难点】
1.难点:让学生掌握边边边 公理的内容和运用公理 的自觉性;
2.重点:灵活运用SSS判定两个三角形是否全等.
【教学过程 】
一、创设问题情境,引入新课
请问同学,老师在黑板上画得两个三角形,△ ABC与△ 全等吗? 你是如何判定的
(同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的`所有边与角,观 察是否有三条边对应相等,三个角对应相等.)
上一节课我们已经探讨两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全等.满足三个条件时,两个三 角形是否全等呢?现在,我们就一起来探讨研究.
二、实践探索,总结规律
1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段 、 、 ,分别为 、 、 ,你能画出这个三角形吗?
先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤.
步骤:
(1)画一线段AB使 它的长度等于c(4.8cm).
(2)以点A为圆心,以线段b(3cm)的长为半径画圆弧;以点B为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点C.
(3)连结AC、BC.
△ABC即为所求
把你画的三角形与其他同学的图形叠合在一起,你们会发现什么?
换三条线段,再试试看,是否有同样的 结论
请你结合画图、对比,说说你发现什么?
同学们各抒己见,教师总结:给定三条线段,如果它们能组 成三角形,那么所画的三角形都是全等的 这样我们就得到判定三角形全等的一种简便 的方法: 如果两个三角形的 三 条边分别对应相等,那么这两个三角形全等.简写为“边边边”,或简记为(S.S.S.).
2、问题2:你能用 相似三角形的判定法解释这个(SSS)三角形全等的判定法吗?
(我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等,这两个三角形不但形状相同,而且大小都一样,即为全等三角形.)
3、问题3、你用这个“SSS”三角形全等的判定法解释三角形具有稳定性吗?
(只要三角形三边的长度确定,这个三角形的形状和大小就完全确定)
4、范例:
例1 四边形ABCD中,AD=BC,AB=DC,试说明△ABC≌△CDA. 解:已知 AD=BC,AB=DC , 又因为AC是公共边,由(S.S.S.)全等判定法,可知 △ABC≌△CDA
三角形全等的判定说课稿 7
课程内容
边边边判定定理
选用教材
人教版数学八年级上册
授课人
崔志伟
授课章节
第十二章第二节
学 时 1
教学重点
掌握全等三角形的判定定理边边边,能运用该定理解决实际问题。
教学难点
探索三角形全等的条件,以及运用边边边定理画一角等于已知角
教学方法
学生合作探究法、教师讲解结合谈话法等综合教学方法
教学手段
黑板板书教学
课 堂 教 学 设 计
阶段
教学内容
导入部分
采用复习导入,教师首先提问学生回顾全等三角形的定义,以及全等三角形的性质。
学生在复习以上知识的条件下教师做出解释,上节课我们已经学习了三角形在满足三边对应相等,三角对应相等,则两三角形全等,那么在实际的运用过程中,需要这么多条件运用会很不方便,那么我们很容易想到,能不能简化条件,得出三角形全等呢?由此引出课题全等三角形的判定。
阶段
课堂教学设计
课程新授
教师让学生大胆想象,可以从一组对应关系相等开始探究,逐步上升到两组对应关系相等三组对应关系相等。
但是为了节约时间,可以让学生从两组开始,如若两组都不行,那一组肯定也不行,反之如若两组条件就足够了,再回头看看一组的情况。
接下来学生在教师的提问下思考二组对应条件的所有可能的情况,预设会有思考不全面的同学,教师即使揭示在一组边与一组角相等的'情况下,边与角的关系可以为相邻,也有可能为相对。
学生在教师的提示下,探索发现满足两组对应关系相等的三角形不一定全等,由此可以断定一组对应关系相等也不能作为判定三角形全等的条件。接下来直接考虑三组对应相等关系的情况。
首先引导学生对三组对应关系相等进行分类。
预设学生部分可以全部考虑到,部分学生考虑不周到,这时教师可以请会的同学展示被同学忽略的情况即两组角与一组对边对应相等时,边可以为对边,也可以为邻边。
本节课将引导学生探索三边相等的情形,有了前面两组对应相等的经验,预设学生根据尺规作图可以画出三边等于已知三角形的三角形,接下来通过三角形全等的定义,让学生动手操作进行验证,发现可以完全重合,由此我们得到三组边对应相等的三角形全等。即SSS,教师解释S为英文边,side的首字母。
接下来请同学说出已知三角形与所作三角形之间存在的对应相等关系,预设学生可以很轻易说出。
由此教师揭示,实际上我们还学回了一个做角等于一只角的另外一种做法,即运用尺规作图画一角等于已知角。接下来,教师稍作解释,请学生探究讨论作图步骤。看谁的最简便。
学生探索过后,教师请学生回答自己的作图步骤,最后由教师板书最简易的作图步骤。
之后我将用练习的方式,加深同学对边边边判定定理的理解并加强应用能力。
作业
作业为书上的练习第二题,以及课后作业的第四题对应基础性练习即巩固性练习。
板书设计
采用归纳式的板书设计,主要板书两种即三种对应关系相等的种类,边边边判定定理的内容以及画一角等于已知角的步骤以及重要练习的过程。
小结
本结课内容比较多,主要体现在全等三角形判定的探索过程,为了节约时间,我选择让学生直接从两个条件开始探究,同时也不影响学生理解,教师主要以引导为主,学生自主探索学习。
三角形全等的判定说课稿 8
教学目标:
1、三角形全等的“边角边”的条件。
2、经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。
3、掌握三角形全等的“sas”条件,能运用“sas”证明简单的三角形全等问题。
能力训练要求:
1、经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力。
2、在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理。
情感与价值观要求
通过对问题的共同探讨,培养学生的协作精神。
教学重点:
三角形全等的条件(sas)
教学难点:
寻求三角形全等的条件。
教学方法:
探究式教学
教具准备:
直尺,三角板,圆规,纸,剪刀
教学过程:
一、创设情境,复习提问
1、怎样的两个三角形是全等三角形?
2、全等三角形的性质?
3、三角形全等的.判定ⅰ(sss)的内容是什么?
4、三个角对应相等的2个三角形是否全等?举例说明。
二、导入新课
1、交流探究
已知任意△abc,画△abc,使ab=ab,ac=ac,∠a=∠a、
把画好的△abc,剪下放在△abc上,观察这两个三角形是否全等?
作法:(1)画∠dae=∠a
(2)在射线ad上截取ab=ab,在射线ae上截取ac=ac
(3)连接bc
用上述方法画出的△abc与△abc全等
在纸片上按上述方法作图,做好后让学生剪下,观察这两个三角形是否重合。
2、交流对话, 获得新知
从中你得到什么结论?
边角边定理:有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“sas”)
3、应用新知,体验成功
(1)如图,ab=ac,f、e分别是ab、ac的中点
求证:△abe≌△acf、
证明:∵f、e分别是ab、ac的中点
∴af= ab? ae= ac(中点的定义)
∵ab=ac
∴af=ae
在△abe和△acf中
af=ae
∠a=∠a(公共角)
ab=ac
∴△abe≌△acf、(sas)
(2)例2如图有一池塘要测池塘两端a、b的距离,可先在平地上取一个可以直接到达a和b的点c,连接ac并延长到d,使cd=ca,连接bc并延长到e,使ce=cb、连接de,那么量出de的长就是a、b的距离,为什么?
分析:如果能证明△abc≌△dec,就可以得出ab=de
证明:在△abc和△dec中
cd=ca
∠acb=∠dce(对顶角相等)
cb=ce
∴△abc≌△dec(sas)
∴ab=de(全等三角形的对应边相等)
总结:证明分别属于两个三角形的线段或者角相等的问题,常常通过证明这两个三角形全等来解决。
(3)再次探究,释解疑惑
我们知道,两边和它们的夹角对应相等的两个三角形全等。由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?
教师用直尺和圆规搭建一个简易模型,得出结论:两边及其中一边的对角对应相等的两个三角形不一定全等。
三、巩固练习
课本p10页练习第1,2题
四、课时小结:
1、根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件。
2、找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理。
五、布置作业
课本p15习题11、2第3,4题
三角形全等的判定说课稿 9
〖教学目标〗
◆1、探索两个直角三角形全等的条件.
◆2、掌握两个直角三角形全等的条件(hl).
◆3、了解角平分线的性质:角的内部,到角两边距离相等的点,在角平分线上,及其简单应用.
〖教学重点与难点〗
◆教学重点:直角三角形全等的判定的方法“hl”.
◆教学难点:直角三角形判定方法的说理过程.
〖教学过程〗
一、 创设情境,引入新课:
教师演示一等腰三角形,沿底边上高裁剪,让同学们观察两个三角形是否全等?
二、 合作学习:
(1) 回顾:判定两个直角三角形全等已经有哪些方法?
(2) 有斜边和一条直角边对应相等的两个三角形全等吗?如何会全等,教师可启发引导学生一起利用画图,叠合方法探索说明两个直角三角形全等的判定方法,可充分让学生想象。不限定方法。
教师归纳出方法后,要学生注意两点:<1>“hl”是仅适用于rt△的特殊方法。
<2>应用“hl”时,虽只有两个条件,但必须先有两个rt△的条件
(3) 教师引导、学生练习 p47
三、 应用新知,巩固概念
例题讲评
例:已知:p是∠aob内一点,pd⊥oa,pe ⊥ob,d,e分别是垂足,且pd=pe,则点p在∠aob的平分线上,请说明理由。
分析:引导猜想可能存在的rt△;构造两个全等的rt△;要说明p在∠aob的平分线上,只要说明∠dop=∠eop
小结:角平分线的又一个性质:(判定一个点是否在一个角的平分线上的方法)
角的.内部,到角的两边距离相等的点,在这个角的平分线上。
四、学生练习,巩固提高
练一练:p48 1. 2. p49 3
五、小结回顾,反思提高
(1)本节内容学的是什么?你认为学习本节内容应注意些什么?
(2)学习本节内容你有哪些体会?
(3)你认为有没有其他的方法可以证明直角三角形全等(勾股定理)
(4)你现在知道的有关角平分线的知识有哪些?
三角形全等的判定说课稿 10
一、教学目标
1、使学生知道什么是最简二次根式,遇到实际式子能够判断是不是最简二次根式、
2、使学生掌握化简一个二次根式成最简二次根式的方法、
3、使学生了解把二次根式化简成最简二次根式在实际问题中的应用、
二、教学重点和难点
1、重点:能够把所给的二次根式,化成最简二次根式、
2、难点:正确运用化一个二次根式成为最简二次根式的方法、
三、教学方法
通过实际运算的例子,引出最简二次根式的概念,再通过解题实践,总结归纳化简二次根式的方法、
四、教学手段
利用投影仪、
五、教学过程
(一)引入新课
提出问题:如果一个正方形的面积是0.5m 2,那么它的边长是多少?能不能求出它的近似值?
了、这样会给解决实际问题带来方便、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、
总结满足什么样的条件是最简二次根式、即:满足下列两个条件的二次根式,叫做最简二次根式:
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
例3?把下列各式化简成最简二次根式:
说明:
1.引导学生观察例题3中二次根式的特点,即被开方数是分数或分式,再启发学生总结这类题化简的.方法,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化化简、
2.要提问学生
问题,通过这个小题使学生明确如何使用化简中的条件、
通过例2、例3总结把一个二次根式化成最简二次根式的两种情况,并引导学生小结应该注意的问题、
注意:
①化简时,一般需要把被开方数分解因数或分解因式、
②当一个式子的分母中含有二次根式时,一般应该把它化简成分母中不含二次根式的式子,也就是把它的分母进行有理化、
(三)小结
1、满足什么条件的根式是最简二次根式、
2、把一个二次根式化成最简二次根式的主要方法、
(四)练习
1、指出下列各式中的最简二次根式:
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1
【三角形全等的判定说课稿】相关文章:
三角形全等的判定说课稿05-22
《三角形全等判定(二)》说课稿07-31
直角三角形全等的判定说课稿11-04
全等三角形的判定教学反思07-04
三角形全等的判定导学案06-18
三角形全等的判定教学反思08-11
三角形全等的判定教学反思07-26
三角形全等的判定教案(通用5篇)07-23
全等三角形说课稿10-02
初中数学三角形全等的判定练习题11-01