初一数学教学设计
作为一名为他人授业解惑的教育工作者,时常要开展教学设计的准备工作,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。教学设计应该怎么写才好呢?以下是小编精心整理的初一数学教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
初一数学教学设计1
一教学目标
1.通过案例理解正比例函数,能列出正比例函数关系式2.教会学生应用正比例函数解决生活实际问题的能力
二教学重点
理解正比例函数的概念
三教学难点
利用正比例函数解决生活实际问题
四教学过程
【提出问题】
《阿甘正传》是一部励志影片。片中阿甘曾跑步绕美国数圈,假设他从德州到加州行进了21000千米,耗费了他150天时间。
(1)阿甘大约平均每天跑步多少千米?
(2)阿甘的行程y(km)与时间x(天)之间有什么关系?
(3)阿甘一个月(30天)的行程是多少千米?
【生】列算式回答【师】点评总结
2.写出下列变量间的函数表达式
(1)正方形的周长l和半径r之间的关系
【进一步抽象问题让学生思考】
(2)大米每千克四元,则售价y元与数量x(kg)的函数关系式是什么?
(3)下列函数关系式有什么共同点?(小组合作)
【分析共同点和不同点,找出规律】(1)y=200x
(2) l=2∏r (3) m=7.8V 【生回答,师点评】 【引入新课】
1.正比例函数的概念:
一般地,形如y=kx (k≠0)的函数,叫做正比例函数,其中k叫做比例系数.【板书概念,引导学生分析正比例函数的定义】
2 【例题讲解】
例1在同一坐标系里,画出下列函数的图像:y=0.5x y=x y=3x解:【略】
【掌握函数图像的.画法:列表,描点,连线】 3.练习
(1)已知正比例函数y=kx.当x=3时y=6 。求k的值
(2)一种笔记本每本的单价为3元。则销售金额y元与销售量x之间的关系式是怎样的?当销售金额为360元时,则售出了多少本这种笔记本?
四小结
五课外作业
【反思】
由于函数的概念比较抽象,学生不容易理解。而理解函数的概念是教学的重点。这节课首先通过实例,回顾函数的概念,其次抽象提出正比例函数关系式,由学生观察得到特点,然后引出正比例函数的概念和特点,再通过练习加以巩固,最后通过小组讨论利用正比例函数解决生活中的问题。
初一数学教学设计2
学习目标:
1.能根据具体问题中的数量关系列出一元二次方程并利用它解决具体问题.
2.学会运用数学知识分析解决实际问题,体会数学的价值。
重点:列一元二次方程解应用题
难点:学会分析问题中的等量关系
一、知识回顾
列方程解应用题的一般步骤是①②③④⑤⑥
二、自学教材、合作探究
1、自学教材45页,学习分析“探究一”中的数量关系
设每轮传染中平均一个人传染了x个人。开始有一人患了流感,第一轮的'传染源就是这个人,他传染了x个人,那么,用代数式表示,第一轮后共有()人患了流感;第二轮传染中,这些人中的每个人又传染了x个人,用代数式表示,第二轮后共有()人患了流感。则可列方程为:
2、解这个方程,得
3、想一想:三轮传染后有多少人患流感?四轮呢?
三、检查自学效果
1.(xxxx年毕节地区)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为()
A.8人B.9人C.10人D.11人
2.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件;全组共互赠了182件.如果全组有x名学生,则根据题意列出的方程是()
A. B. C. D.
四、指导学生应用
某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(xxxx广东中考9分)
解:设每轮感染中平均每一台电脑会感染台电脑,1分
4分
解之得6分
8分
答:每轮平均每一台电脑会感染台电脑,3轮感染后,被感染的电脑超过700台。
五、巩固训练:
1.一个多边形的对角线有9条,则这个多边形的边数是().
A.6 B.7 C.8 D.9
2.元旦期间,一个小组有若干人,新年互送贺卡一张,已知全组共送贺卡132张,则这个小组共有( )人
A.11 B.12 C.13 D.14
3.九年级(3)班文学小组在举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组共互赠了240本图书,如果设全组共有x名同学,依题意,可列出的方程是()
A.x(x+1)=240 B.x(x-1)=240
C.2x(x+1)=240 D.x(x+1)=240
4.参加中秋晚会的每两个人都握了一次手,所有人共握手10次,则有()人参加聚会。
5.学校组织了一次篮球单循环比赛,共进行了15场比赛,那么有个球队参加了这次比赛。
6.甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?
反思:2题和4题列方程时为何不一样呢?
六、归纳小结:
1.本节课我们学习了列一元一次方程解应用题,要注意解题步骤,特别地,要检验解的结果是否正确与符合题意,并注意题型的积累。
2.(方法归纳)解应用题地步骤是:审、设、列、解、检、答,关键是寻找等量关系,可以采用列式法,线段图示法,列表法等来帮助寻找,并注重检验。
七、效果测评:
1.解下列方程。(1)+10x+21=0(2)-x=1
2.两个相邻的偶数的积是240,求这两个偶数。
3.参加一次足球联赛的每两个队之间都进行两场比赛,共要比赛90场,共有多少个队参加比赛?
初一数学教学设计3
教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯
重点难点:
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
教学过程:
一、试一试
1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,2.x的值是否可以任意取?有限定范围吗?
3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的`函数,试写出这个函数的关系式,对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0<x<10。对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0<x<10)就是所求的函数关系式.
二、提出问题
某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答:
1.商品的利润与售价、进价以及销售量之间有什么关系?
[利润=(售价-进价)×销售量]
2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?
[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降价x元,则每件商品的利润是多少元?一天可销
售约多少件商品?
[(10-8-x);(100+100x)]
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]
5.若设该商品每天的利润为y元,求y与x的函数关系式。
[y=(10-8-x) (100+100x)(0≤x≤2)]
将函数关系式y=x(20-2x)(0<x<10=化为:
y=-2x2+20x(0<x<10………(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D (0≤x≤2)……(2)
三、观察;概括
1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;
(1)函数关系式(1)和(2)的自变量各有几个?
(各有1个)
(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式? (分别是二次多项式)
(3)函数关系式(1)和(2)有什么共同特点?
(都是用自变量的二次多项式来表示的)
(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。
2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
四、课堂练习
1.(口答)下列函数中,哪些是二次函数?
(1)y=5x+1 (2)y=4x2-1
(3)y=2x3-3x2 (4)y=5x4-3x+1
2.P3练习第1,2题。
五、小结
1.请叙述二次函数的定义.
2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。
六、作业:略
初一数学教学设计4
一、教材分析
全期共有六章。新授课程主要有一元一次不等式组、二元一次方程组、平面上直线的位置关系和度量关系、多项式的运算 、轴对称图形、数据的分析与比较。
第一章 一元一次不等式组
本章主要使学生掌握一元一次不等式组的解法,以及怎样利用一元一次不等式组解决实际问题。
重点:一元一次不等式的解法及其简单应用。
难点:了解一元一次不等式组的解集,准确利用不等式的基本性质。
第二章 二元一次方程组
本章通过实例引入二元一次方程,二元一次方程组以及二元一次方程组的概念,培养学生对概念的理解和完整性和深刻性,使学生掌握好二元一次方程组的两种解法。
重点:二元一次方程组的解法,列二元一次方程组解决实际问题。
难点:二元一次方程组解决实际问题
第三章 平面上直线的位置关系和度量关系
本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案。
重点:垂线和它的性质,平行线的判定方法和它的性质,平移和它的性质,以及这些的组织运用。
难点:探索平行线的条件和特征,平行线条件与特征的区别,运用平移性质探索图形之间的平移关系,以及进行图案设计。
第四章 多项式的运算
本章主要要求了解多项式的的有关概念,能进行简单的多项式的加、减、乘运算,以及乘法公式。注重联系实际,为将来学函数奠定基础让课堂内容生动、趣味化,从学生熟悉的背景引出概念。
重点:对于每个概念的正确理解,以及各项法则的正确、灵活的应用。
难点:探索各项法则的形成原因。
第五章 轴对称图形
本章主要体会对称之美,利用轴对称进行图案设计,认识和欣赏轴对称在现实中的应用。认识特殊三角形的性质及角平分线、垂直平分线的性质,设计开放性很强的练习,关注学生情感、价值观的培养,关注局部与整体的教学思维的训练。
重点:探索轴对称图形的基本性质及其相互关系,丰富对空间图形的认识和感受。
难点:在动手操作中探索几何规律。
第六章 数据的.分析与比较
本章紧扣数据,抓住概念本质,紧密联系实际对平均数、加权平均数、极差、方差的概念进行阐述。注重了让学生自主思考、相互交流,形成结论的教学方法。
重点:掌握加权平均数的意义、计算及与普通平均数的区别与联系;掌握理解极差、方差的有关概念与意义;学会用计算器进行数据的分析。
难点:能联系实际问题,利用数字特征分析数据组的统计特性,并对不同数据组的性质进行比较。
学情分析
本学期是本年级学生初中学习阶段的第二学期。通过上期的学习,大多数学生对学习数学产生了浓厚的学习兴趣。更有像陈琦、严细毛、瞿俐纯等同学更是对数学探究活动情有独衷。上期期末考试中,0901整体水平稍高于兄弟班级,但有两极分化的趋势。0902班的及格率稍高于兄弟班,但低分段学生高于10%,而且这部分学生对学习缺乏应有的热情和自信,有自暴自弃之嫌。
目标任务
本学期的数学教学要从学生的实际问题出发,积极引导学生观察、思考、探究、讨论、归纳数学问题,要鼓励学生去探索、发现数学的奥妙,用学到的本领去解决复习巩固、综合运用、拓展探索等不同层次的问题。教学中既要注意知识的覆盖面,关注中考的重点、热点和难点,又要突出数学知识在社会、科技中的运用,让学生在学习、练习中熟记知识要点、考试内容,掌握应试技巧和数学思想方法,提高综合素质,培养创新意识和探索能力。在期中、期末考试中力争生均分70分左右,合格率60%以上,优秀率30%以上,并将低分率控制到10%以下。
初一数学教学设计5
随着科学技术的发展,教育资源和教育需求也随之增长和变化。我校进行了初中数学分层教学课题研究,而分层次备课是搞好分层教学的关键,教师应在吃透教材、大纲的情况下,按照不同层次学生的实际情况,设计好分层次教学的全过程。本文将结合本人的教学经验,对分层教学教案设计进行初步探讨。
1、教学目标的制定
制定具体可行的教学目标,先要分清哪些属于共同目标,哪些属于层次目标。并在知识与技能、过程与方法、情感态度与价值观三个方面对不同层次的学生制定具体的要求。
2、教法学法的制定
制定教法学法应结合各层次学生的具体情况而定,如对A层学生少讲多练,注重培养其自学能力;对B层学生,则实行精讲精练,注重课本上的例题和习题的处理;对C层学生则要求要低,浅讲多练,弄懂基本概念,掌握必要的基础知识和基本技能。
3、教学重难点的制定
教学重难点的制定也应结合各层次学生的具体情况而定。
4、教学过程的设计
4.1情境导向,分层定标。教师以实例演示、设问等多种方法导入新课。要利用各种教学资料创设恰当的学习情境为各层学生呈现适合于本层学生水平学习的内容。
4.2分层练习,探讨生疑。学生对照各自的目标分层自学。教师要鼓励学生主动实践,自觉地去发现问题、探讨问题、解决问题。
4.3集体回授,异步释疑。“集体回授”主要是针对人数占优势的B层学生,为解决具有共性的问题而组织的'一种集体教学活动。教师为那些来不及解决的、不具有共性的问题分先后在层内释疑即“异步释疑”。
5、练习与作业的设计
教师在设计练习或布置作业时要遵循“两部三层”的原则。“两部”是指练习或作业分为必做题和选做题两部分;“三层”是指教师在处理练习时要具有三个层次:第一层次为知识的直接运用和基础练习;第二、三两层次的题目为选做题,这样可使A层学生有练习的机会,B、C两层学生也有充分发展的余地。
分层教学下教师不能再“拿一个教案用到底”,而要精心地设计课堂教学活动,针对不同层次的学生选择恰当的方法和手段,了解学生的实际需求,关心他们的进步,改革课堂教学模式,充分调动学生的学习主动性,创造良好的课堂教学氛围,形成成功的激励机制,确保每一个学生都有所进步。
初一数学教学设计6
一、 教案背景
1、 面对对象:面向七年级学生
2、 学科:数学
3、 课题:7.1.1有序数对
4、 课时:
5、 课前准备:
硬件:调试多媒体,特别是投影仪
软件:多媒体课件。
学生:预习本节课内容,完成基础训练课前预习部分。
二、 教材分析:
本节内容是本章的起始内容,是学生学习了相交线、平行线和实数的基础上的学习,为以后学习直角坐标系和研究函数的运动变化奠定知识基础。虽是初始内容,但是学生在实际生活中用“数对”表示点或事物的位置的意识很浓,只是谈到“有序”感到陌生。这些知识积淀,为完成本节课内容的学习做了强有力的支撑。同时本节内容有利于增强学生的数学符号感,是“数”向“形”的正式过渡,使学生充分认识到数学是描述解决实际生活中事物、问题的重要工具,树立学好数学的信心,提高分析问题、解决问题的能力。
教学目标:
(1)记住有序数对的定义;
(2)掌握有序数对的表示方法;
(3)会用有序数对表示物体的位置和设计图案。
过程与方法:通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能
力,让学生体会“具体-抽象-具体”的数学学习过程。
情感、态度与价值观:培养学生的合作交流意识和探索精神,创造性思维意识。体验数
学来源于生活及应用于生活的意识,更好的激发学习兴趣。
教学重点与难点
重点:
有序数对的概念及平面内确定点的方法。
难点: 对有序数对中的有序的理解,利用有序数对表示平面内的点。
三、教学方法 :
1、 创设情境法法
2、 任务驱动法
3、 以学生为主体教育思想为基础,探究式学习为主,结合学习目标教学法和讨论交流法。
四、 教学过程
(一)创设情境、导入新课
[引例]展示新中国成立60周年的庆典活动图片:同学们,你知道这幅图片的来历吗?这是在新中国成立60周年的庆典活动中,天安门广场上出现的壮观的背景图案。原来,广场上有许多同学,每人都按图案设计的要求,按排号,列号站在一个确定的位置,随着指挥员的信号,他们举起不同颜色的花朵,如第10排第15号举红花;第28排第30列举黄花,整个方阵就组成了绚丽的背景图案,形成了人的世界,花的海洋。大家一定觉得很神奇吧!别急,学习了今天的内容,相信聪明的你们一定会明白其中的奥妙!
引入课题——有序数对
(二) 组织学生根据自学指导进行自学:
认真看课本P64~65页练习前的内容:
自学指导:
(1)看64页正数第一段了解电影院里的对号入座;
(2)理解并记住有序数对的定义 及掌握其表示方法;
(2)完成P65的思考,在图7.1.1标出参加问题讨论同学的`位置;
并进一步深入思考:若去掉“列数在前,排数在后。被邀请参加讨论的同学的座位能唯一确定吗?”
(3)完成P65的练习。
5分钟后,比谁的自学效果好。
(三)小组合作:针对自学中出现的问题进行合作,探究
(四)应用迁移、巩固提高
(1)走进生活:让学生寻找生活中应用有序数对的例子;
(2)下象棋马的位置;
(3)做游戏:赵好朋友的位置
(四)拓展升华
知识点:有序数对
有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。
注意点:(a,b)与(b,a)表示的是两个不同的位置。
主要方法:利用有序数对可以确定平面内点的位置,如根据数对画图形。反之,也可点的位置转化为有序数对,如经纬网的使用。有序数对与点的位置实现了简单的数形结合。
[拓展应用]小李初到某个城市,你有什么办法让他比较容易地找到图上的几处场所。
(五)教学反思
“有序数对”为全章起始节,是后继学习直角坐标系的基础,与实际生活密切相关。学生对生活中“有序数对”已有无意感知。针对教材及学生认知的特点,设计时,我有如下思考:
1.按知识发展与学生认知序,设计教学流程:
(1)初一学生性格开朗活泼,对新鲜事物特别敏感,且较易接受,因此,课前预习和教学过程中创设的问题情境应较生动活泼,直观形象,且贴近学生的生活,从而引起学生对“数对”的有意注意。事实上,“有序数对”已存在于我们学生所熟视无睹的生活中,教学时,我们先从生活中有意识地提取模糊在头脑中的表示位置的数对。
(2)初一学生的概括能力较弱,推理能力还有待发展,所以在教学时,可让学生充分探讨、分析,帮助他们直观形象地感知“有序”的重要意义,进而通过学生的主动参与,抽象成清晰的“有序数对”的数学模型。
(3)初一学生已经具备了一定的学习能力,所以本节课中,应多为学生创造自主学习、合作学习的机会,让他们主动参与、勤于动手、从而乐于探究“有序数对”的应用。再通过不断变换问题情景的应用,使学生深化理解概念,内化为自己的知识。
基于以上认识,我围绕下列线索进行设计:
“问题情境——建立模型——实践应用——拓展延伸”
2. 注重创设教学情境,激活学生思维,力求让生生产生共振:
情境是 “一个人在进行某种活动时所处的社会环境”。从认知的角度看,情境可视为人的认知活动的信息来源。数学情境是含有相关数学知识和数学方法的情境,同时也是数学知识产生的背景,它不仅能激发数学问题的提出,也能为数学问题的解决提供相应的信息和依据.本课的教学情境的创设主要表现在:
(1)以问题为导向,设计数学情境。本课从开始几个问题的引入,到后来的密码解译,图案的设计,既围绕教学内容,又将题目情趣化。
(2)以数学知识发生为依托,设计数学情境。本课以国庆60周年庆典图案为切入口,激发出学生探究新知的求知欲。找座位、下象棋、拼图案、做游戏等问题中无一不蕴涵着“有序数对”的数学背景。
(3)以题型变换为手段,设计数学情境。围绕知识点,在本课学生训练的题型中,有填空、选择、开放题,形式有别,知识相通,避免了训练的单调。
(4)借助多媒体。根据本课内容特点,运用色彩斑斓的图片展示及形象生动的小动画,引起学生对所学内容的学习兴趣和改善学习的乏味心理,促进学生的心理由潜伏状态转变为活跃状态。
3.多样化练习和评价:
本节课采用的评价方法主要有:观察、抽问和练习抽查等。教学中注意随时观察学生对学习的态度表现,如注意力集中的程度、情感的参与和行为参与的情况;通过提问和练习,评价学生对学习内容的认知程度,如对学习内容的思维反应是否积极;课堂练习、回答问题的正确程度;练习的正确率等等。为了使评价更有效,不能只按少数学生的反应作出判断,应注意收集不同信息。通过收集的信息,对学生的问题作出及时的矫正和评说,并对教学内容和教学过程作适当的调控,最终达到教学目标。
4.教学效果:
这堂课老师教得轻松,学生学得愉快,每个学生都参与到活动中去,投入到学习中来,使学习的过程充满快乐和成功的体验,促使学生自主学习,勤于思考和勇于探究,形成良好的学习品质。
由于这堂课游戏多、活动大,热热闹闹中,胆大、性格开朗的学生特别活跃,也容易引起老师的注意,而对那些胆小性格较内向的学生就注意不够。个别理解能力和接受能力慢一些的学生 ,给予他们的帮助还不到位,这些学生课后作业完成不够好。
初一数学教学设计7
教材分析:
1、 本节内容是七年级下第九章《轴对称》中的重点部分,是等腰三角形的第一节课,由于小学已经有等腰三角形的基本概念,故此节课应该是在加深对等腰三角形从轴对称角度的直观认识的基础上,着重探究等腰三角形的两个定理及其应用,如何从对称角度理解等腰三角形是新教材和旧教材完全不同的出发点,应该重新认识,把好入门的第一课。
2、 等腰三角形是在第八章《多边形》中的三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形成的思路和观点,也是对理解“等腰”这个条件造成的特殊结果的重要之处。
3、 等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的地位,是构成复杂图形的基本单位,等腰三角形的定理为今后有关几何问题的解决提供了有力的工具。
4、 对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的常用出发点之一,学好本节知识对加深对称思想的理解有重要意义。
5、 例题中的几何运算,是数形结合的思想的初步体验,如何在几何中结合代数的等量思想是教学中应重点研究的问题。
6、 新教材的'合情推理是一个创新,如何把握合情推理的书写及重点问题,本课中的例题也进一步做了示范,可以认真研究。
7、 本课对学生的动手能力,观察能力都有一定的要求,对培养学生灵活的思维,提高学生解决实际问题的能力都有重要的意义。
8、 本课内容安排上难度和强度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争的意识。
学情分析:
1、 授课班级学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学。
2、 该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的优势,兼顾效率和平衡。
3、 本班为自己任课的班级,平时对学生比较了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动学生的积极性。
教学目标:
知识目标: 等腰三角形的相关概念,两个定理的理解及应用。
技能目标: 理解对称思想的使用,学会运用对称思想观察思考,运用等腰三角形的思想整体观察对象,总结一些有益的结论。
情感目标: 体会数学的对称美,体验团队精神,培养合作精神。
教学中的重点、难点:
重点:
1、等腰三角形对称的概念。
2、“等边对等角”的理解和使用。
3、“三线合一”的理解和使用。
难点: 1、等腰三角形三线合一的具体应用。
2、等腰三角形图形组合的观察,总结和分析。
主要教学手段及相关准备:
教学手段:
1、使用导学法、讨论法。
2、运用合作学习的方式,分组学习和讨论。
3、运用多媒体辅助教学。
4、调动学生动手操作,帮助理解。
准备工作:
1、多媒体课件片断,辅助难点突破。
2、学生课前分小组预习,上课时按小组落座。
3、学生自带剪刀,圆规,直尺等工具。
4、每人得到一张印有“长度为a的线段”的纸片。
教学设计策略:依据教学目标和学生的特点,依据教学时间和效率的要求,在此课教学方法和教学模式的设计中我主要体现了以下的设计思想和策略:
1、 回归学生主体,一切围绕着学生的学习活动和当堂的反馈程度安排教学过程。
2、 原则性和灵活性相结合,既要完成教学计划,在教学过程中又可以根据现实的情况,安排问题的难度,体现一些灵活性。
3、 教学的形式上注重个体化,充分给予学生讨论和发表意见的机会,注重学习的参与性,努力避免以教师活动为主体的教学过程。
初一数学教学设计8
教学目标
【知识与技能】
理解反比例函数的概念,根据实际问题能列出反比例函数关系式.
【过程与方法】
经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.
【情感态度】
培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.
【教学重点】
理解反比例函数的概念,能根据已知条件写出函数解析式.
【教学难点】
能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.
教学过程
一、情景导入,初步认知
1.复习小学已学过的反比例关系,例如:
(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)
(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)
2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?
【教学说明】对相关知识的复习,为本节课的学习打下基础.
二、思考探究,获取新知
探究1:反比例函数的概念
(1)一群选手在进行全程为3000米的比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.
(2)利用(1)的关系式完成下表:
(3)随着时间t的变化,平均速度v发生了怎样的变化?
(4)平均速度v是所用时间t的函数吗?为什么?
(5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?
【归纳结论】一般地,如果两个变量x,y之间可以表示成y=(k为常数且k≠0)的形式,那么称y是x的反比例函数.其中x是自变量,常数k称为反比例函数的比例系数.
【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t,其中自变量t可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t代表的是时间,且时间不能为负数,所有t的取值范围为t>0.
【教学说明】教师组织学生讨论,提问学生,师生互动.
三、运用新知,深化理解
1.见教材P3例题.
2.下列函数关系中,哪些是反比例函数?
(1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系;
(2)压强p一定时,压力F与受力面积S的`关系;
(3)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系.
(4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式.
分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=(k是常数,k≠0).所以此题必须先写出函数解析式,后解答.
解:
(1)a=12/h,是反比例函数;
(2)F=pS,是正比例函数;
(3)F=W/s,是反比例函数;
(4)y=m/x,是反比例函数.
3.当m为何值时,函数y=是反比例函数,并求出其函数解析式.分析:由反比例函数的定义易求出m的值.解:由反比例函数的定义可知:2m-2=1,m=3/2.所以反比例函数的解析式为y=.
4.当质量一定时,二氧化碳的体积V与密度ρ成反比例.且V=5m3时,ρ=/m3
(1)求p与V的函数关系式,并指出自变量的取值范围.
(2)求V=9m3时,二氧化碳的密度.
解:略
5.已知y=y1+y2,y1与x成正比例,y2与x2成反比例,且x=2与x=3时,y的值都等于19.求y与x间的函数关系式.
分析:y1与x成正比例,则y1=k1x,y2与x2成反比例,则y2=k2x2,又由y=y1+y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y与x间的函数关系式.
解:因为y1与x成正比例,所以y1=k1x;因为y2与x2成反比例,所以y2=,而y=y1+y2,所以y=k1x+,当x=2与x=3时,y的值都等于19.
【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式.
四、师生互动、课堂小结
先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.
课后作业
布置作业:教材“习题”中第1.3.5题.
教学反思
学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.
初一数学教学设计9
《有理数的惩罚》教学设计
一、学情分析:
1、学生的知识技能基础:学生在小学已经学习过非负有理数的四则运算以及运算律。在本章的前面几节课中,又学习了数轴、相反数、绝对值的有关概念,并掌握了有理数的加减运算法则及其混和运算的方法,学会了由运算解决简单的实际问题,具备了学习有理数乘法的知识技能基础。
2、学生的活动基础:在相关知识的学习过程中,学生已经历了探索加法运算法则的活动,并且通过观察"水位的变化",运用有理数的加法法则解决了一些实际问题,从而获得了较为丰富的数学活动经验,同时在以前的学习中,学生曾经历了合作学习和探索学习的过程,具有了合作和探索的意识。
二、教材分析:
教科书基于学生已掌握了有理数加法、减法运算法则的基础上,提出了本节课的具体学习任务:发现探索有理数的乘法法则,了解倒数的概念,会进行有理数的运算。
本节课的数学目标是:
1、经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力;
2、学会进行有理数的乘法运算,掌握确定多个不等于零的有理数相乘的积的符号方法以及有一个数为零积是零的情况:
三、教学过程设计:
本节课设计了六个环节:第一环节:问题情境,引入新课;第二环节:探索猜想,发现结论;第三环节:验证明确结论;第四环节:运用巩固,练习提高;第五环节:课堂小结;第六环节:布置作业。
第一环节:问题情境,引入新课
问题:(1)观察教科书给出的图片,分析教科书提出的问题,弄清题意,明确已知是什么,所求是什么,让学生讨论思考如何解答。
(2)如果用正号表示水位上升,用负号表示水位下降,讨论四天后,甲水库水位的变化量的表示法和乙水库水位变化量的表示法。
设计意图:培养学生从图形语言和文字语言中获取信息的能力,感受用数学知识解决实际问题,体验算法多样化,并从第二种算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)从而引出课题:有理数的乘法。
第二环节:探索猜想,发现结论
问题:(1)由课题引入中知道:4个-3相加等于-12,可以写成算式
(-3×4)=-12,那么下列一组算式的结果应该如何计算?请同学们思考:
(-3)×3=_____;
(-3)×2=_____;
(-3)×1=_____;
(-3)×0=_____。
(2)当同学们写出结果并说明道理时,让学生通过观察这组算式等号两边的特点去发现积的变化规律,然后再出示一组算式猜想其积的结果:
(-3)×(-1)=_____;
(-3)×(-2)=_____;
(-3)×(-3)=_____;
(-3)×(-4)=_____。
教前设计意图:以算式求解和探究问题的形式引导学生逐步深入的观察思考,从负数与非负数相乘的一组算式中发现规律后,猜想负数与负数相乘的积是多少,通过对两组算式的观察,归纳,概括出有理数的乘法法则,并用语言表述之,以培养学生的观察能力,猜想能力,能力和表述能力。
教后事项:(1)本环节的设计理念是学生通过观察思考,亲身经历感受乘法法则的发现过程,并在合作交流中互相补充,完善结论。但在实际过程中,学生对结论的表述有困难,或者表达不准确,不全面,对于这些问题,不能求全责备,而应循循善诱,顺势引导,帮助学生尽可能简练准确的表述,也不要担心时间不足而代替学生直接表述法则。
(2)展示两组算式时,注意板书艺术,把算式竖排,并对齐书写,这样易于学生观察特点,发现规律。
第三环节:验证明确结论
问题:针对上一环节探究发现的有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘,任何数与零相乘,积仍为零。进行验证活动,出示一组算式由学生完成。
4×(-4)=_____;
4×(-3)=_____;
4×(-2)=_____;
4×(-1)=_____;
(—4)×0=_____;
(—4)×1=_____;
(—4)×2=_____;
(—4)×(-1)=_____;
(—4)×(-2)=_____。
教前设计意图:这个环节的设计一方面是因为它是合情推理的必要环节,另一方面是为了让学生知道从特例归纳得到的结论不一定适合
一般情况,所以要加以验证和证明它的正确性。同时,验证的过程本身就是对有理数乘法法则的练习和熟悉过程。
教后反思事项:(1)教科书中没有这个环节的要求,但在教学中应该设计这个环节,确实让学生体验经历验证过程。
(2)本环节的重点是验证乘法法则的正确性而不是运用乘法法则计算。所以在验证过程中,既要用乘法法则计算,又要加法法则计算,真正体现验证的作用和过程。
(3)在用乘法法则计算时,要注意其运算步骤与加法运算一样,都是先确定结果的符号,再进行绝对值的运算。另外还应注意:法则中的“同号得正,异号得负”是专指“两数相乘而言的,”不可以运用到加法运算中去。
第四环节:运用巩固,练习提高
活动内容:
(1)1。计算:
⑴(-4)×5; ⑵(5-)×(-7);
⑶(-3÷8)×(-8÷3);⑷(-3)×(-1÷3);
(2)2。计算:
⑴(-4)×5×(-0。25); ⑵(-3÷5)×(-5÷6)×(-2);
3。“议一议”:几个有理数相乘,因数都不为零时,积的符号怎样确定?有一个因数为零时,积是多少?
(4)计算:
⑴(-8)×21÷4 ; ⑵4÷5×(-25÷6)×(-7÷10);
⑶2÷3×(-5÷4); ⑷(-24÷13)×(-16÷7)×0×4÷3;
⑸5÷4×(-1。2)×(-1÷9); ⑹(-3÷7)×(-1÷2)×(-8÷15)。
教前设计意图:对有理数乘法法则的巩固和运用,练习和提高.
教后反思事项:(1)学生先自主尝试解决,全班交流,教师点拨要注意格式规范,一开始对每一步运算应注明理由,运算熟练后,可不要求书写每一步的`理由;
(2)例2讲解之后,要启发学生完成"议一议"的内容,鼓励学生通过对例2的运算结果观察分析,用自己的语言表达所发现的规律,学生有困难时,教师可设置如下一组算式让学生计算后观察发现规律,而不应代替学生完成这个任务。
(-1)×2×3×4=_____;
(-1)×(-2)×3×4=_____;
(-1)×(-2)×(-3)×4=_____;
(-1)×(-2)×(-3)×(-4)=_____;
(-1)×(-2)×(-3)×(-4)×0=_____。
通过对以上算式的计算和观察,学生不难得出结论:多个数相乘,积的符号由负因数的个数,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。当然这段语言,不需要让学习背诵,只要理解会用即可。
第五环节:感悟反思课堂小结
问题
1.本节课大家学会了什么?
2.有理数乘法法则如何叙述?”
3.有理数乘法法则的探索采用了什么方法?
4.你的困惑是什么
教前设计意图:培养学生的口头表达能力,提高学生的参与意识。激励学生展示自我。
教后反思事项:学生小结时,可能会有语言表达障碍或表达不流畅,但只要不影响运算的正确性,则不必强调准确记忆,而应鼓励学生大胆发言,同时教师可用准确的语言适时的加以点拨。
第六环节:布置作业
巩固作业:教科书知识技能1、2;问题解决1;联系扩广1
预习作业;略
四、教学反思:
1、设计条理的问题串,使观察、猜想、验证水到渠成
2、相信学生的探索能力。本节课的内容适合学生探索,只要教师适当引导,学生具有能力探索出有理数的乘法法则的,不需要教师代替,也不能代替。
3、合理使用多媒体教学手段可以弥补课堂时间的不足,但绝不能代替必要的板书。
初一数学教学设计10
一、教学目标:
(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。
(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。
(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。
二、教学的重点与难点:
重点:三角形全等条件的探索过程是本节课的重点。
从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。
难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。
根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时
点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。
三、教学过程
电脑显示,带领学生复习全等三角定义及其性质。电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是,是否一定需要六个条件呢?条件能否尽可能少吗?对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的`学生需要,发展学生个性思维。
按照三角形“边、角”元素进行分类,师生共同归纳得出:
1、一个条件:一角,一边
2、两个条件:两角;两边;一角一边
3、三个条件:三角;三边;两角一边;两边一角
按以上分类顺序动脑、动手操作,验证。
教师收集学生的作品,加以比较,得出结论:
只给出一个或两个条件时,都不能保证所画出的三角形一定全等。
下面将研究三个条件下三角形全等的判定。
(1)已知三角形的三个角分别为40°、60°、80°,画出这个三角形,并与同伴比较是否全等。
学生得出结论后,再举例体会一下。举例说明:
如老师上课用的三角尺与同学用的三角板三个角分别对应相等,但一个大一个小,很显然不全等;
再如同是:等边三角形,边长不等,两个三角形也不全等。等等。
(2)已知三角形三条边分别是4cm,5cm,7cm,画出这个三角形,并与同伴比较是否全等。
板演:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
由上面的结论可知:只要三角形三边的长度确定了,这个三角形的形状和大小就确定了。实物演示:由三根木条钉成的一个三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫三角形的稳定性。
举例说明该性质在生活中的应用
类比着三角形,让学生动手操作,研究四边形、五边性有无稳定性
图形的稳定性与不稳定性在生活中都有其作用,让学生举例说明。
题组练习(略)3 、(对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理过程。对一般学生要求口头表达理由,并能说明每一步的根据。)
教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律。
在教师引导下回忆前面知识,为探究新知识作好准备。
议一议:
学生分小组进行讨论交流。受教师启发,从最少条件开始考虑,一个条件;两个条件;三个条件?经过学生逐步分析,各种情况渐渐明朗,进行交流予以汇总,归纳。
想一想:
对只给一个条件画三角形,画出的三角形一定全等吗?
画一画:
按照下面给出的两个条件做出三角形:
(1)三角形的两个角分别是:30°,50°
(2)三角形的两条边分别是:4cm,6cm
(3)三角形的一个角为30,一条边为3cm剪一剪:
把所画的三角形分别剪下来。比一比:
同一条件下作出的三角形与其他同学作的比一比,是否全等。学生重复上面的操作过程,画一画,剪一剪,比一比。学生总结出:三个内角对应相等的两个三角形不一定全等学生举例说明
学生模仿上面的研究方法,独立完成操作过程,通过交流,归纳得出结论。鼓励学生自己举出实例,体验数学在生活中的应用.学生那出准备好的硬纸条,进行实验,得出结论:四边形、五边形不具稳定性。
学生练习
学生在教师引导下回顾反思,归纳整理。
初一数学教学设计11
一、教学措施:
1、认真备课,不但备学生而且备教材备教法,根据教材内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。每一课都做到 有备而来 ,每堂课都在课前做好充分的准备,并制作各种利于吸引学生注意力的有趣教具,课后及时对该课作出总结。
2、课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主动作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师讲得尽量少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高。
3、虚心请教其他老师。在教学上,有疑必问。在各个章节的学习上都积极征求其他老师的意见,学习他们的方法,同时,多听老师的课,做到边听边讲,学习别人的优点,克服自己的不足,并常常邀请其他老师来听课,征求他们的意见,改进工作。
4、认真批改作业:布置作业做到精读精练。有针对性,有层次性。同时对学生的作业批改及时、认真,分析并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结。
5、做好课后辅导工作,注意分层教学。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免一刀切的弊端,同时加大对后进生的辅导力度。对后进生的辅导,并不限于学习知识性的辅导,更重要的是学习思想的辅导,要提高后进生的成绩。
6、积极推进素质教育。目前的考试模式紧密联系学生的生活实践,注重基础知识和基本技能的形成,鼓励学生自主探索,实践能力,促进学生全面发展。 为此在教学工作中注意了学生能力的培养,把传受知识、技能和发展智力、能力结合起来,在知识层面上注入了思想情感教育的因素,发挥学生的创新意识和创新能力。让学生的各种素质都得到有效的发展和培养。
二、教学内容
第九章: 角
第十章: 平行线
第十一章: 图形与坐标
第十二章: 二元一次方程组
第十三章: 走进概率
第十四章: 整式的乘法
第十五章: 平面图形的'认识
三、时间安排:
第一周 第二周 第九章
第三周 第四周 第十章
第五周 第六周 第十一章
第七周 第八周 第十二章
第九周 第十周 第十三章
第十一周 第十二周 第十三周 第十四章
第十四周 第十五周 第十六周 第十五章
第十七周 第十八周 复习考试
四、教学重点、难点
教学重点:
角的概念,平行线的性质和判定,一次函数的图像和性质,二元一次方程组的解法和应用,不确定事件概率的意义,整式的乘法,多边形的内角和、外角和的公式应用
教学难点:
角的性质的理解及语言表述;平行线性质与判定的合理推理;从函数图像中正确读取信息;二元一次方程组的解与一次函数图像交点之间的关系;不确定事件概率的简单计算;零指数与负指数;多边形的密铺。
一份耕耘,一份收获。教学工作苦乐相伴。我们将本着 勤学、善思、实干 的准则,一如既往,再接再厉,把工作搞得更好争取本学期教学工作有进步。
初一数学教学设计12
一、 基本情况分析
1、学生情况分析
这学期我承担七(1)(2)两班的数学教学,这些学生整体基础参差不齐,小学没有养成良好的学习习惯,所以任务艰巨。在小学所学知识的掌握程度上,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,但位数不多。对多数学生来说,简单的基础知识还不能有效掌握,成绩稍差。学生的逻辑推理、逻辑思维能力,计算能力要得到加强,还要提升整体成绩,适时补充课外知识,拓展学生的知识面,抽出一定的时间给强化几何训练,全面提升学生的数学素质。
2、教材分析:
1、第1章有理数:本章主要学习有理数的基本性质及运算。本章重点内容是有理数的概念,性质和运算。本章的难点在于理解有理数的基本性质、运算法则,并将它们应用到解决实际问题和计算中。
2、第2章整式的加减:本章主要是学习单项式和多项式的加减运算。本章重点内容是单项式、多项式、同类项的概念;合并同类项及去括号的法则及整式的加减运算。本章难点在于理解合并同类项和去括号的法则。
3、第3章一元一次方程:本章主要学习一元一次方程的概念、等式的基本性质、一元一次方程的解法及应用。本章重点内容是理解等式的基本性质;掌握解一元一次方程的一般步骤;列方程解决实际问题的基本思路。本章难点在于解一元一次方程,并利用一元一次方程解决简单的实际问题。
4、第4章几何图形初步:本章主要学习线段和角有关的性质。本章的重点是区别直线、射线、线段,角的有关性质和计算;理解互为余角、互为补角的性质及应用。本章的难点在于线段和角的`有关计算。
二、 教学目标和要求
(一)知识与技能
1.获得数学中的基本理论、概念、原理和规律等方面的知识,了解并关注这些知识在生产、生活和社会发展中的应用。
2.学会将实践生活中遇到的实际问题转化为数学问题,从而通过数学问题解决实际问题。体验几何定理的探究及其推理过程并学会在实际问题进行应用。
3.初步具有数学研究操作的基本技能,一定的科学探究和实践能力,养成良好的科学思维习惯。
(二)过程与方法
1.采用思考、类比、探究、归纳、得出结论的方法进行教学;
2.发挥学生的主体作用,作好探究性活动;
3.密切联系实际,激发学生的学习的积极性,培养学生的类比、归纳的能力.
(三)情感态度与价值观
1.理解人与自然、社会的密切关系,和谐发展的主义,提高环境保护意识。
2.逐步形成数学的基本观点和科学态度,为确立辩证唯物主义世界观奠定必在的基础。
三、 提高教学质量的主要措施
l、认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作考试试试卷,也让学生学会认真学习。
2、兴趣是最好的老师,激发学生的兴趣,给学生介绍数学家、数学史、介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
初一数学教学设计13
一,教学目标
1,知识与技能:理解单项式,单项式的系数,单项式的次数的概念,说出它们之间的区别和联系,并能指出一个单项式的系数和次数.
2,过程与方法:初步学会观察,对比,归纳的方法;发展学生的观察能力,思维能力及分析能力.
3,情感与价值观:培养学生合作交流意识,渗透数学知识源于生活,又为生活而服务的辩证思想.
二,教学设想
本节属于概念教学课,力图体现概念形成的过程.本节课从生活中的实际问题引入,让学生经历由数字到用字母表示数家的过程,再提出问题,让学生列出相应关系式,学生探究式子的特点,从而引出单项式的概念.因此,课堂教学中,可以采用教师引导与学生参与相结合的方式,这样就可以促进师生互动,活跃课堂气氛,达到良好的教学效果.
三,教材分析
本章属于《全日制义务教育数学课程标准(实验稿)》中的数与代数领域.整式是在以前已经学习了有理数运算的基础上引进的,本节内容由本章引言中的问题引出,在实际问题中逐步归纳单项式,单项式系数和单项式次数的概念,在了解概念的基础上准确指出一个单项式的系数及次数,内容衔接上循序浙进,让学生乐于接受.
四,重点,难点
教学重点:单项式,单项式系数及单项式次数概念.
教学难点:区别单项式的系数和次数.
五,教学方法
通过实际问题架设学习探索平台,教师采用点拨,引导的方法,启发学生经历主动思考,自主探索及合作交流的过程来达到对知识的发现和接受,进而完成知识内化,使书本知识成为自己的知识.
六,教学过程
教师活动
学生活动
设计意图
一,创设情境,激趣导入.
问题1:举世瞩目的青藏铁路于20xx年7月1日建成通车,是世界上海拨最高,路线最长的高原铁路.今天我们就来探讨这条铁路上有关路程的问题:
青藏铁路线上,在格尔木到拉萨之间有一段很长的'冻土地段,列车在冻土地段的速度是100千米/时,在非冻土地段的速度可以达到120千米/时,问:
列车在冻土地段的行驶时,2小时能行驶多少千米3小时能行使多少千米t小时呢
分析:根据速度,时间和路程的关系:
路程=速度*时间则
它2小时行驶的路程:100*2=200(千米)
它3小时行驶的路程:100*3=300(千米)
它t小时行驶的路程:100*t=100t(千米)
点示:字母t表示时间,用含有字母t的式子100t表示路程.
注意:在含有字母的式子中如果出乘号,通常将号写作.或省略不写.
问题2:用含有字母的式子填空.解答教科书第54面思考题.
(1)6a2,a3(2)2.5x(3)vt(4)-n
由此引和新课.
二,合作交流,探索新知
1,单项式概念的探索.
①以上几个式子有什么共同特征
分析:6a2是6.a.a的乘积.
a3是a.a.a的乘积.
2.5x是2.5.x的乘积.
vt是v.t的乘积.
-n是-1.n的乘积.
归纳:都表示数与字母的积.
②引出单项式的概念:
教学活动
倾听
思考
分析
思考
师生互动
列式解答
倾听
理解
思考
归纳
倾听
理解概念
举例集体评议
学生活动
从生活中的实际问题引入,激发了学生的学习兴趣,对新课起着过渡作用.
由浅入深,对新知识的掌握起着循序渐进的作用.
培养学生的分析能力及表达.
及时强调让学生对新知识掌握得更加完整.
培养学生的分析,思考及归纳能力
加深对概念的了解
培养学生的评价能力
为概念的引出
设计意图
表示数或字母的积的代数式叫做单项式.特别的,单独一个数或一个字母也叫做单项式.如Z,a等.
③让学生举出单项式的例子.
2,单项式系数和次数的探索.
问题1:以上单项式有什么结构特点
总结:由数字因数和字母因数两部分组成.
问题2:分别说出它们的数字因数和各字母的指数.
教师归纳:
单项式中的数字因数,叫做单项式的系数.
一个单项式中,所有字母的指数的和,叫做这个单项式的次数.
交流练习:同桌之间一人举出单项式,另一人指出单项式的系数及次数(教师巡视指导,请各别学生展示交流成果.)
思考
总结
思考
倾听
理解
记忆
同桌交流
学习
展示成果
做好铺垫
理解概念,为下一步利用概念解决问题作好铺垫.
在学生形成解题思维之后,手让学生完成给学生自我展示的空间.
3,例题教学
教科书55页例1
学生独立解决后互相交流,最后教师归纳并在黑板上加以规范.
三,练习巩固,熟练技能.
1,教科书第56页练习第1,2题.
2,下列各式:-x+3,6x,其中是单项式的是.
四,总结反思,拓展延伸.
1,让学生谈谈本节课的收获.
2,通过今天的学习,你想进一步探究的问题是什么
五,思考
独立完成
师生互动
独立完成
集全评议
六,谈谈本节课的收获
培养学生思考及解决问题的能力
检验学生对知识的掌握程度.
通过总结,再次加深学生对知识的掌握程度,给学生充分发挥的空间.
七,板书设计
2.1整式
一,青藏铁路问题(略)
二,单项式的概念
单项式系数及次数的概念.
三,例题讲解
八,点评
本教案的设计,符合学生的年龄特点,有利于学生探索重在让学生参与知识产生,发展,应用的全过程.让学生充分感知多项式及相关概念的形成过程,很发地发挥了学生的主体地位,但学生独立提出问题较少.
初一数学教学设计14
一、教学目标:
1.理解二元一次方程及二元一次方程的解的概念;
2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;
3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;
4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育.
二、教学重点、难点:
重点:二元一次方程的意义及二元一次方程的解的概念.
难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程.
三、教学方法与教学手段:
通过与一元一次方程的比较,加强学生的类比的思想方法; 通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点.
四、教学过程:
1.情景导入:
新闻链接:桐乡70岁以上老人可领取生活补助,
得到方程:80a+150b=902 880.
2.新课教学:
引导学生观察方程80a+150b=902 880与一元一次方程有异同?
得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程.
做一做:
(1)根据题意列出方程:
①小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价.设苹果的单价x元/kg , 梨的单价y元/kg ;
②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程: .
(2)课本P80练习2. 判定哪些式子是二元一次方程方程.
合作学习:
活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动.
问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人.
团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行? 为什么? 把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等? 由学生检验得出代入方程后,能使方程两边相等. 得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解.
并提出注意二元一次方程解的书写方法.
试一试:
检验下列各组数是不是方程2x=y+1的解:
①??x?4,
?y?3,②??x?2.5,
?y?4,③??x??6,
?y??13.
②③是方程的解,每个学生再找出方程的一个解,引导学生得到结论:一般情况下,二元一次方程有无数个解.
3.合作学习:
给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值; 接下来男女同学互换.(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法.提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?
出示例题:已知二元一次方程 x+2y=8.
(1)用关于y的代数式表示x;
(2)用关于x的代数式表示y;
(3)求当x= 2,0,-3时,对应的y的'值,并写出方程x+2y=8的三个解.
(当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)
4.课堂练习:
(1)已知:5xm-2yn=4是二元一次方程,则m+n=;
(2)二元一次方程2x-y=3中,方程可变形为y= 当x=2时,y= ;
(3) 已知 ??x?2,
?y?1是关于x,y的方程2x+ay=5的一个解,则a= .
5.你能解决吗?
小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角.小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案.
6.课堂小结:
(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);
(2)二元一次方程解的不定性和相关性;
(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.
7.布置作业:(1)教材P82; (2)作业本.
初一数学教学设计15
教材分析
《垂线》选自义务教育课程标准实验教科书《数学》(华东师大版)七年级上册第四章相交线。垂线是平面几何所要研究的基本内容之一,是七年级上册第四章“图形的初步认识”的主要内容。垂线的概念、画法和性质是重要的基础知识,是进一步学习空间里的垂直关系、三角形的高、切线的性质和判定以及平面直角坐标系等知识的基础,与其他数学知识一样,它在现实生活中有着广泛的应用。垂线的概念和性质,蕴含着“从一般到特殊”的认识规律,是培养学生思维能力的重要内容之一。它作为学习几何的基础内容,对以后学生利用准确合理的构造画出垂线来分析几何关系、解决几何综合问题及相关实际问题具有重要意义。
实验教材将本节内容分两课时,与九年义务教育教材相比,虽然缩短了一课时,但更注重对学生实际操作能力的培养,更注重渗透变换的思想。“做一做”这种探究性活动,为培养学生的参与意识和创新意识提供了机会。垂线的画法是学生学习本节内容的一个难点。结合学生所学的知识及生活实际,有效地引导学生认知和感受知识的发生发展过程;精心设计投影片和变式训练,并恰到好处地利用运动变化,体现画垂线的思维过程,在掌握垂线概念的基础上,使学生顺利自然地突破画垂线的难点。
学生分析
我校属农村城镇中学,学生全部享受九年义务教育,实行电脑随机分班,未进行筛选。学生智力水平参差不齐,基础和发展均不平衡。经过一学期的实践,学生基本上适应了以学习小组方式参与探究活动与班级学习方式相结合的学习方法,不同程度地享受到了数学知识来源于实践操作的成功体验,从而愿意在教师的指导下主动与同学探索、发现、归纳数学知识。
设计理念
针对教材内容和学生实际,组织学生实践、感悟出两直线互相垂直的概念,引导学生分析解决问题,使学生在自己动手的基础上,发现垂线的性质,又借助于教具、实物、图形、幻灯等,从直观的感性认识发现抽象的概念,使学生成为探求知识的主体。同时利用问题探究式的方法让学生对新课加以巩固理解。在探究垂线的性质时,采取小组学习形式,可增强学生之间的合作互助,弥补教师在大班额教学中对弱势学生关注的不足。初步探索在农村中学中如何进行研究性学习。
教学自标
1.了解两条直线互相垂直的概念;知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线。
2.培养提高观察、理解能力,几何语言能力,画图能力,抽象思维能力和运用知识解决实际问题的能力。
3.培养辩证唯物主义思想及不断发现、探索新知识的精神。
4.通过创设情境,利用变式训练和多种教学手段来激发学生学习兴趣,给学生创造成功的机会,使他们爱学、会学、学会,营造学生可持续发展的氛围。
教学重点:
两直线互相垂直的有关性质。
教学难点:
过直线上(外)一点作已知直线的垂线。
【学习目标是从基础知识教学、基本技能训练、数学能力培养和德育目标四个方面,依据《数学课程标准》关于“垂线”的具体教学要成和各种教学原则,以及本节的教材内容与学生的实际确定的。】
课前准备
课前准备教具:多媒体、投影仪、自制的可旋转的两根木条等。
生活经验准备:旗杆与旗台边线线的垂直关系;红十字会标志。
以往知识准备:两条直线相交,产生两对对顶角,且对顶角相等。
教学流程
一、创设问题情境。
师:这是两幅草坪的`图案。在绿色的草坪上,画着两条交叉的道路。你觉得甲图、乙图哪一幅更漂亮、更匀称?这是什么原因?(教师用多媒体或投影仪展示。)
(学生众说纷纭,教师应给予充分的肯定。)
师:图甲是两条直线相交的一种特殊情况,它在生活、生产实际中应用比较广。请你再举一些类似的例子。
生:……
师:让我们共同探索图甲这种特殊情况。
【借助于教具、模型、实物、图形及幻灯等教学手段,使学生先得到直观的感性认识,培养学生从感性到理性的认知方式。】
二、回顾再现。
对顶角相等两条直线相交只有一个交点。如图1,直线AB和CD相交,交点为点O,有四个小于平角的角,且。
三、提高。
教师演示自制教具,要求学生观察当一根木条绕着另一根木条旋转时的变化情况,并用数学语言进行描述。
【教师应鼓励学生大胆描述自己的观察结果,并及时予以肯定。】
师:两直线相交,有两组分别相等的角,当一个角等于90°时,其他三个角有什么变化?可能产生四个相等的角吗?如图2,同时演示教具,将直线CD绕着点O旋转,当时,是多少度?
生:……
师:你们的依据是什么?
生:……
(学生的答案很丰富:用度量的方法;利用对顶角相等;互补的概念……学生回答过程中,只要有道理就应予以鼓励。)
【这里希望在感性认识的基础上进行抽象概念的教学,培养学生的抽象思维能力。】
四、提升。
教师引导学生归纳出:两条直线互相垂直,两条直线相交所构成的四个角中有一个角是直角时,称这两条直线互相垂直。
师:(1)如图2,直线AB和CD相交,交点为O,记为,垂足为点O。“ ”读作“AB垂直于CD”或“CD垂直于AB”。
(2)两条直线,垂足为点O,则。
【实现数学的三大语言文字语言、符号语言和几何语言之间的切换,并板书,以突出其重要性。】
五、再探究。
师:请同学们举一些日常生活中互相垂直的直线的例子;
生:……
【希望实现将数学知识在实际生活中的运用,并为后继学习数学知识增加感性认知。】
师:请同学们用三角尺或量角器:
(1)经过直线AB外一点P,画直线与已知直线AB垂直,且讨论这样的直线有几条。
(2)设这一点在直线AB上,重作上述过程。
【学生分组或独立探索,教师巡视指导。】
教师引导学生归纳结论:在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
【通过学生动手操作画图,教师在巡视中及时指出、纠正学生发生的错误,训练学生以严谨的科学态度研究问题、解决问题。】
师:请同学们互相交流且简单描述一下,上述结论用三角尺的作法过程和“有且只有”的含义。
(学生讨论交流,教师巡视)
教师引导归纳出:
(1)靠已知直线找待过定点画已知直线的垂线(一靠、二过、三垂直)。
(2)有一条并且只有一条,没有第二条。
师:请同学们相互比试,谁能更快地过直线CD上一点P作直线AB的垂线。并在小组间进行交流。
【探究性活动是《数学课程标准》的一个重要举措,并为培养学生的创新意识提供了一些机会。“做一做”进行小组交流,一方面是为了加强对学生动手操作能力的培养,同时也培养了学生的合作意识和竞争意识,使学生更深入理解垂直、垂线的概念。】
六、学生探索。
学生分小组测量,讨论,归纳。如图6所示,点A与直线DC上各点的距离长短一样吗?谁最短?它具备什么条件?(抽小组代表发言。)
七、总结归纳。
教师总结归纳:只有线段AB最短,且当AB与DC垂直时,才最短。
教师引导学生得出线段AB特征:A为直线外一点,B为过A向直线DC所引的垂线的垂足,提高:线段AB的长度就是点A到直线DC的距离。
思考:点A到直线DC的距离与点A到点C的距离有什么区别?
点A到直线DC的距离:线段AB的长度,A为直线外一点,B为过A向直线DC所引的垂线的垂足;点A到点C的距离:两点之间线段的长度。
【从生活实际.从学生感兴趣、熟悉的问题引导学生发现里线的第二个性质,提高学生学数学的兴趣,并适当体现学数学用数学发现教学的思想。】
八、较量
1.第170页第1、2、3题。
2.应用。
【带有竞争性质的练习使学生在相互竞争中,在实践中应用本节课的知识,分享获取成功的喜悦,并促进学生形成积极向上的心理品质。】
(1)某村庄在如图7所示的小河边,为解决村庄供水问题,需把河中的水引到村庄A处,在河岸CD的什么地方开沟,才能使沟最短?画出图来,并说明道理。
(2)教材第170页“做一做”。
(3)体育课上怎样测量跳远成绩。
【学以致用,学生做个小小设计师.兴趣盎然,把这节课引入高潮。】
学生重温“两条直线互相垂直的概念”和“如何过已知直线上或已知直线外的一点作惟一的垂线”两个知识点。
3.第174页第1、2题。
4.学校的位置如图8所示,请设计出学校到两条公路的最短距离的方案,并在图上标出来,并说明理由。
【初一数学教学设计】相关文章:
初一数学教学设计06-01
数学教学教学设计06-27
数学教学设计07-09
《数学》教学设计06-27
数学教学设计06-12
数学教学设计-10-17
数学教学设计09-24
数学教学设计08-12
数学教学设计11-17
初一·《春》教学设计03-11