《梯形的面积》数学教案设计

时间:2024-12-03 15:54:26 诗琳 教案 我要投稿
  • 相关推荐

《梯形的面积》数学教案设计(通用17篇)

  作为一位杰出的老师,常常要写一份优秀的教案,教案是教材及大纲与课堂教学的纽带和桥梁。那么问题来了,教案应该怎么写?以下是小编为大家整理的《梯形的面积》数学教案设计,欢迎阅读,希望大家能够喜欢。

《梯形的面积》数学教案设计(通用17篇)

  《梯形的面积》数学教案设计 1

  教学目标

  1、通过操作、观察、比较等活动,自主探索梯形面积计算公式,渗透转化的数学思想方法。

  2、能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。

  教学重难点

  教学重点:探索并掌握梯形面积计算公式。

  教学难点:理解梯形面积计算公式的推导过程,体会转化的思想。

  教学过程

  一、复习引入,知识铺垫

  计算下面各图形的面积:

  全班核对答案。

  教师:平行四边形、三角形的面积计算公式分别是什么?

  教师:它们之间有什么联系呢?

  因为两个完全重合的三角形可以拼成一个平行四边形,所以平行四边形面积的计算公式的一半就是三角形面积的计算公式。

  【设计意图】通过平行四边形、三角形的面积计算方法以及它们之间的联系,为学习新知做好方法上的准备。

  二、探究梯形面积的计算公式

  1、提出问题(课件出示教材第95页的主题图)。

  教师:同学们在图中发现了什么?

  教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?

  教师:你能用学过的方法推导出梯形的面积计算公式吗?

  2、动手操作。

  (1)选择合适的材料,进行操作。(同桌合作)

  (2)反馈交流。

  让各小组充分展示操作过程。关键了解学生是怎样想的?询问其余同学是否有疑问?在操作中学生会发现,只有两个完全重合的梯形才能拼成一个平行四边形。

  预设:

  ①数方格;

  ②拼摆,转化成平行四边形;

  ③割,转化成两个三角形;

  ④割,转化成一个平行四边形和一个三角形;

  ⑤割,转化成长方形和两个三角形;

  ⑥割补法,转化成平行四边形。

  【设计意图】这一环节让学生大胆动手操作,在实验中不断发现解决问题,在同伴的交流中拓展自己的思维、视野。

  3、公式推导。

  (1)教师:

  方法①的数方格的方法中渗透着割补法的思想,

  方法②到方法⑥都是把梯形转化成我们已经学过面积计算方法的图形。

  先以方法②为例,观察原有的梯形和转化后的平行四边形,你发现它们之间有哪些等量关系?

  学生:梯形的上底与下底的和等于平行四边形的底,梯形的高和平行四边形的高相等。梯形的面积是平行四边形的面积的一半。

  学生边说,教师边课件演示。

  逐步完成板书:

  教师:如果用表示梯形的面积,表示梯形的上底,表示梯形的下底,表示梯形的高,梯形的面积公式还可以写成:(板书)。

  (2)教师:观察方法③,如果把梯形割成两个三角形,如何来推导梯形的面积计算公式呢?这两个三角形和原来的梯形有什么样的等量关系呢?

  学生:三角形1的底就是梯形的上底,三角形2的底就是梯形的下底,两个三角形的高都和梯形的高相等。两个三角形的面积之和就是梯形的面积。

  学生边说,教师边板书演示。

  教师:为了方便,我们直接用表示梯形的上底,用表示梯形的下底,表示梯形的高。

  教师:这与前面推导出来的梯形面积计算公式是一样的。

  (3)教师:观察方法④,如果把梯形分割成一个平行四边形和一个三角形,又如何推导公式呢?割成的平行四边形、三角形和原来的梯形有什么样的等量关系呢?

  学生:平行四边形的底就是梯形的上底,三角形的底等于梯形的下底减上底,平行四边形、三角形和梯形的高是相等的。平行四边形的面积加三角形的面积就等于梯形的面积。

  学生边说,教师边板书演示。

  其中的计算过程稍复杂,可配合教师讲解完成。

  教师:这和前面推导出来的结论是一样的。

  (4)教师:看方法⑤,把梯形分割成一个长方形和两个三角形,又如何推导公式呢?先说说它们之间有什么样的等量关系?

  学生:长方形的长就是梯形的上底,长方形、三角形和梯形的高是相等的。长方形加两个三角形的面积就是梯形的面积。

  学生发现两个三角形的`底是多少,无法描述,不确定。这时,把两个三角形拼成一个三角形。新三角形的底就是梯形的下底减上底。

  教师边板书演示。

  教师:接下来的推导过程和方法④是一样的。

  (5)教师:方法⑥,通过割补法把梯形转化成平行四边形。它们之间又有什么样的等量关系呢?

  学生:平行四边形的底就是梯形的上底和下底之和,平行四边形的高等于梯形的高的一半。平行四边形的面积和梯形的面积相等。

  教师课件演示。

  教师:通过上面多种转化方法,我们知道了梯形的面积计算公式,现在你知道要计算梯形的面积需要哪些数据了吗?(上底、下底、高)

  【设计意图】不满足于一种方法的公式推导,展示多种方法,开拓学生的思维,沟通多种推导方法之间的联系和区别,凸显转化思想的作用。

  三、学以致用

  1、出示教材第96页例3。

  例:我国长江三峡水电大坝的横截面的一部分是梯形,求它的面积?

  教师:什么是横截面?

  请学生独立解决,全班核对答案。

  教师:因为我们刚刚开始学梯形的面积公式,对公式不熟,所以计算时可以先写上公式,再列算式。等以后熟练了,公式可以省略。

  2、练习,出示教材第96页“做一做”。

  教师:这题特别要看清楚问题,问的是“它们的面积分别是多少”,所以问的是“左边梯形的面积是多少”和“右边梯形的面积是多少”,千万不要把“分别”看成“共”,变成求整个大梯形的面积。

  3、求面积,只列式不计算?

  4、求出这条水渠的横截面?

  5、有一个梯形果园,它的上底是45米,下底是60米,高是30米,如果每棵果树占地15平方米,这个果园大约可以种果树多少棵?

  完成教材第97页第1题到第5题。

  《梯形的面积》数学教案设计 2

  教学目标:

  1、在平行四边形、三角形面积推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式。

  2、会正确、较熟练的运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、解决问题的能力;。

  3、通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,发展学生的空间观念。

  4、渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。

  教学重难点

  教学重点:理解并掌握梯形面积公式,会计算梯形的面积。

  教学难点:自主探究梯形面积公式。

  教学过程

  课前准备:谁来介绍你们的姓名、年龄、学校、爱好等等,让大家都来了解你。

  我们先介绍这,我相信同学们在课堂上的表现一定会让所有的老师都记住你。

  一、创设情境,激发兴趣。

  (出示情境图)。

  谈话:同学们,今天李老师和你们一起来参观王伯伯的甲鱼池,请仔细观察,你能发现哪些数学信息?

  生:1号甲鱼池的形状是梯形的,每平方米放养甲鱼苗200只。

  师:根据发现,你能提出什么数学问题?

  学生观察情境图,提出问题。

  生:1号甲鱼池的面积有多大?

  师:你提的问题很好,同学们想不想知道。谁还能提出什么问题?

  生:1号甲鱼池能放养多少甲鱼苗?

  二、自主探究梯形的面积计算方法。

  1、教师:刚才同学们提的问题都很有价值。(课件)我们来看这两个问题。要求1号甲鱼池的面积,也就是求什么图形的面积?

  生:梯形。

  师:你会求这个梯形的面积吗?那么怎样求梯形的面积呢?这节课我们就一起来探究梯形的面积。板书课题:梯形的面积。

  教师:如果我用这个梯形纸片代表甲鱼池的面积,想一想,你能用什么办法求出这个梯形纸片的面积?请你先独立思考,然后在小组内交流一下你的方法。

  2、小组讨论交流,教师巡视了解。

  3、展示、汇报交流。

  师:哪个小组先来说说你们的方法。拿着你的梯形到前面来说给同学听一听。

  生1:(方法1)——把梯形分成平行四边形和三角形,分别计算出它们的面积,再求出它们的面积和。

  师:你觉得这个方法行吗?大家看,这个小组的方法是把梯形分割成平行四边形和三角形来求,谁是这样想的?

  师:谁有不同的方法?

  生2:(方法2)——把梯形分成两个三角形,求出每个三角形的面积,再计算出它们的面积和。

  师:你这个方法也挺好。这个小组是把梯形分割成两个三角形来求梯形面积,真是些爱动脑筋的好孩子。和他方法一样的同学请举手。谁的方法和他们都不一样?

  生3:(方法3)——把两个完全一样的梯形拼在一起,拼成一个平行四边形,这个梯形是平行四边形面积的一半。平行四边形的面积等于底乘高再除以2就是梯形的面积。

  师:这个同学说的太好了。大家认为这个方法好不好?

  这个同学的方法是把两个完全一样的梯形拼成一个平行四边形,平行四边形的面积等于底乘高,这个底是谁的底?高呢

  生:平行四边形的底,平行四边形的高。

  师:平行四边形的面积等于底乘高再除以2就是梯形的面积。

  师:大家看,这位同学用了这样两个完全一样的梯形拼成一个平行四边形。是不是任意两个完全一样的梯形都能拼成一个平行四边形?

  师:大家用手中的梯形拼一拼,谁再上来拼一拼,再说给同学们听听。

  师:看来任意两个完全一样的梯形都能拼成一个平行四边形。每个梯形的面积就是平行四边形面积一半。大家理解这个方法了吗?还有不同的吗?

  生4(方法四):我用两个完全一样的直角梯形拼成了长方形,一个梯形的面积就是这个长方形面积的一半。

  师:这个方法是不是所有的两个完全一样的梯形都可以用。

  生:是两个直角梯形。

  师汇总:对,刚才同学们想出了这些方法来求梯形面积,你们真了不起。下面我们来看这些方法。(课件演示)

  第一种是把梯形分割成一个三角形和一个平行四边形;

  第二种是把梯形分割成两个三角形;

  第三种把两个完全一样的梯形拼成了一个平行四边形。

  表扬:这三种方法都是把梯形转化成已学过的图形来解决。同学们能够运用转化的方法,你们真的很棒。这种方法很重要,在以后的学习中我们会经常用到。

  我们前面学过的长方形、正方形、平行四边形、三角形都有自己的面积计算公式,那么梯形也有自己的面积计算公式。

  师:大家先来猜想。你认为梯形的面积可能与梯形的什么条件有关系?

  生:上底和下底,高

  生:与腰有关。

  师:梯形的面积到底与它们有什么关系呢?你们想不想研究?

  三、探究操作,推导出梯形面积公式:

  (一)出示问题,明确目标

  我们首先来看这三种方法,根据我们现有水平,由于前两种方法对我们来说研究起来确实有困难,下面我们就采用第3种方法来深入研究梯形的面积。

  (点课件)大家一起来看这种方法,同学们用两个完全一样的梯形拼成平行四边形,梯形的面积等于拼成平行四边形面积的一半。

  师板书:两个完全一样的梯形拼成平行四边形

  梯形的面积=拼成平行四边形面积÷2=底×高÷2。

  拼成平行四边形的底会与梯形的上底、下底有什么关系?拼成平行四边形的高和梯形的高又有什么关系?根据这些关系,你能推导出梯形面积计算方法吗?

  师:下面就请同学们用手中的梯形拼一拼,想一想,怎样推导梯形面积计算公式。请同学们在小组内研究研究。

  (二)自主探究合作学习

  小组内讨论交流。

  学生分组动手操作,教师巡视指导。

  教师参与到每个小组中进行讨论和指导,以便发现和收集信息。

  (三)成果交流,质疑解难

  1、全班展示回报:

  师:哪个小组的同学说一说你们小组是怎么研究的?拿着你手中的纸片到前面跟同学说一下。

  生:两个完全一样的梯形拼成一个平行四边形,梯形的面积是平行四边形面积的一半。平行四边形的底就是梯形的(上底+下底),平行四边形的高就是梯形的高。推导出梯形的面积公式就是梯形的(上底+下底)乘高除以2。

  师表扬:这个小组研究的`非常好,推导出梯形面积计算方法。大家听明白了吗?

  师:你们也是这样想的吗?哪个小组再来说说你们的做法?

  3、师:刚才同学们经过研究,推导出梯形面积计算方法。下面我们一起来回顾梯形面积的推导过程。(课件演示转化过程)

  梯形面积=平行四边形面积÷2

  梯形面积=底×高÷2

  师:拼成的平行四边形的底是梯形的上底与下底的和,平行四边形的高与梯形的高相等,就是(上底+下底)×高÷2

  师:这样我们就得到了梯形的面积公式是梯形面积=(上底+下底)×高÷2

  2 、师:通过研究,我们发现拼成的平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形的高,谁再来说说梯形面积计算方法是什么?生说师板书。

  板书面积公式:梯形的面积=(上底+下底)×高÷2。

  提问:(上底+下底)×高算的是什么?为何要除以2?。

  4、学习字母表达式:

  谈话:谁能用字母表示?说说每个字母分别表示什么?

  师:S=(a+ b)×h ÷2(板书)

  四、运用知识,解决情景问题。

  师:这节课同学们研究了怎样求梯形的面积。推导出求梯形面积计算公式,现在我们就运用所学知识来解决前面提出的两个问题:1号甲鱼池的面积是多少?能放养多少只甲鱼苗?(课件出示题目)

  请学生做在练习本上。两名学生板演,其余学生独立练习。全班交流。

  四、随堂检测,巩固目标。

  师:看来同学们会运用梯形面积计算方法解决实际问题。接下来我们要向自己挑战,有没有信心。

  挑战自我:

  一、判断

  1、两个梯形就可以拼成平行四边形。()

  2、梯形的面积一定比平行四边形的面积小。()

  3、在下图中平行四边形的面积是梯形面积的2倍。()

  师:同学们判断的很好,理解问题很透彻,希望同学们向更高的目标挑战。下面看看实际生活中的梯形,你能计算出他们的面积吗?

  二、(挑战自我)

  解决问题:

  1、学校操场要建一个梯形指挥台,平面是梯形,上底是5米,下底8米,高6米,这个梯形台的平面是多少平方米?

  2、一块梯形的墙,上底15米,下底比上底多5米,高是6米,这块墙的面积是多少平方米?

  3、一个梯形,上底和下底的和是36cm,高12cm,它的面积是多少?

  师:显示我们聪明才智的机会到了,请同学们大显身手。

  4、王大爷用50米长的篱笆靠墙围了一个羊圈(如图)。求这个梯形羊圈的面积。

  学生独立练习,全班交流。

  课后小结

  课堂小结:

  同学们,这节课你们都有哪些收获?还有哪些不懂的地方?

  课后习题

  作业布置:

  学校门前有一条水沟,横截面是梯形。沟口宽0、9米,沟底宽0、7米,沟深0、5米、它的横截面的面积是多少平方米?

  《梯形的面积》数学教案设计 3

  教学内容:

  梯形面积计算的应用(第81页的例题,练习十九第5-10题)

  教学目标:

  进一步熟练掌握梯形的面积计算公式,并能正确解答有关的实际应用问题。

  教具准备;

  沟渠的实物模型

  教学过程:

  一、复习

  ⒈梯形的面积计算公式是什么?它为什么与三角形的面积公式类似,也要÷2?

  ⒉面积常用的计量单位有哪些?相邻两个面积单位之间的进率是多少?

  填写课本第84页第6题。

  ⒊口答:

  ⑴求梯形的面积。

  ①a=3b=6h=4②a=9b=10h=0.4

  ⑵求三角形的面积。

  ①a=2.1h=5②a=49h=10

  ⑶求平行四边形的面积。

  ①a=5h=8②a=49h=10

  二、新授

  ⒈例题教学:

  一条新挖的.渠道,横截面是梯形。渠口宽2.8米,渠底宽1.4米,渠深1.2米。它的横截面的面积是多少平方米?

  ⑴出示渠道实物模型,帮助学生理解;渠道横截面面积就是梯形的面积,渠口宽就是梯形的上底,渠底宽就是梯形的下底,渠深就是梯形的高。

  ⑵学生独立完成例题,教师巡视、指导。

  ⑶指名板演,再评讲。

  (2.8+1.4)×1.2÷2

  =4.2×1.2÷2=2.52(平方米)

  ⒉学生质疑。

  三、巩固练习

  ⒈完成练习十九第7题,先计算,再填表。

  ⒉完成练习十九第8、9、10题。

  教师讲评并作全课总结。

  四、板书设计:

  梯形面积的计算

  五、教后感:

  《梯形的面积》数学教案设计 4

  教学内容:

  小学数学第七册7475页的内容

  教学目的:

  1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确的计算梯形的面积。

  2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

  教学重点、难点:

  理解梯形面积计算公式的推导,并能应用公式正确的进行计算。

  教具准备:课件。

  教学过程:

  (一)复习旧知,做好铺垫。

  1、指名让学生说说平行四边形和三角形的面积公式,(课件出示公式)并讲讲怎样推导三角形的`面积公式的。

  2、练习(出示)

  口答下面各图形的面积。(单位:厘米)

  (二)创设情景,提出问题

  师:前不久,我们学校开展植树护绿活动,四年级同学要在劳动实践基地的一块空地里种桃树,你们看看这块地的形状近似于那种平面图形呢?(课件显示图)

  师:谁能指出这个梯形的上底、下底和高各是多少?(指名回答)

  师:如果每棵桔树占地4平方米,那么这块地里能种多少棵桔树呢?(让学生思考一下)你认为应该先求什么?(指名说说,引入新课。)

  (三)小组学习,解决问题。

  师:梯形面积怎么计算呢?它是不是也有公式呢?下面就请同学们小组合作,想办法推导出梯形面积公式,看一下合作要求:(课件出示)

  合作要求:

  (1)想一想:我们已经学过哪几种图形的面积公式?

  (2)试一试:把梯形转化成已经学过的图形。(任选一种)

  (3)比一比:转化成的图形的各部分跟梯形的各部分有什么关系?

  《梯形的面积》数学教案设计 5

  教材分析

  “梯形的面积”是在学生认识了梯形特征,掌握平行四边形、三角形面积的计算,并形成一定空间观念的基础上进行教学的。因此,教材没有安排用数方格的方法求梯形的面积,而直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积。

  学情分析

  本课以小组合作,动手操作为主教学,这样设计有利于全班参与,更为学困生提供了思考的机会。其次有利于学生间的充分交流与合作,为探索出更多的方法提供了机会。

  教学目标

  1、在实际情境中,认识计算梯形面积的必要性。

  2、引导学生在自主参与探索的过程中,发现并掌握梯形的面积计算方法,能灵活运用梯形面积计算公式解决相关的数学问题。

  3、结合数学“再创造”过程,培养学生观察、操作、比较等逻辑思维能力与初步的科学探究能力。

  4、通过小组合作学习,培养学生合作学习的`能力。

  教学重点和难点

  教学重点:探索并掌握梯形面积是本节课的重点

  教学难点:理解梯形面积计算公式的推导过程是本课的难点。

  教学流程示意

  (一)、复习旧知

  本环节由点开始学生就展开想象,在兴趣盎然的状态中打开了思维,轻松自然的引出各种已学平面图形的面积。

  (二)、探究新知

  此环节为学生创设了一个广阔的天空,顺其天性,自然调动已有的数学策略,突破教材以导为主的限制,以学生活动为主。

  (三)深化巩固

  运用公式是课堂教学中不可缺少的一个过程,这一环节通过练习既能巩固公式,又有利于学生灵活运用所学知识解决生活中的数学问题,使学生体会到数学来源于生活,又应用于生活,同时感受祖国伟大的壮举,从而产生爱国主义情怀。

  《梯形的面积》数学教案设计 6

  教学目标

  1、在实际情境中,认识计算梯形面积的必要性。

  2、在自主探索中,经历推导梯形面积计算公式的过程。

  3、能运用梯形的面积公式,计算相关图形的面积,解决实际问题。

  教学重点

  经历推导梯形面积计算公式的过程。

  教学难点

  理解并能运用梯形的面积公式进行计算。

  教具、学具

  教学挂图,梯形纸片,剪刀,三角尺等。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  一、复习

  平行四边形、三角形以及梯形的面积公式

  二、计算梯形面积时应注意的些什么?

  学生讨论后汇报总结。

  S=ah

  S=ah÷2

  S=(a+b)×h÷2

  1、必须知道底和高,计算单位要统一,底和高要对应。

  2、等底(底相等)等高(高相等)的两个梯形面积一定相等,形状不一定相同。

  3、完全一样的`梯形可以拼成一个平行四边形,梯形的面积是平行四边形的面积的一半,平行四边形的面积是梯形面积的2倍。所以:

  巩固平行四边形和梯形的面积计算方法。

  让学生熟练的掌握各种有关梯形面积计算的方法。能灵活运用。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  三、练习

  练一练第1~3题。

  四、布置作业

  练一练第4题。

  已知梯形的底和高,求面积用(上底+下底)×高÷2。

  已知梯形的底和面积,求高,用面积×2÷(上底+下底)。

  板书设计:梯形的面积

  S=ah

  S=ah÷2

  S=(a+b)×h÷2

  教学反思:

  《梯形的面积》数学教案设计 7

  教学内容:

  混合练习(课本第84-85页,练习十九第11-18题)

  教学目标:

  ⒈通过混合练习,理清多边形的面积计算公式,能够熟练地运用公式求面积和解答有关的应用问题。

  ⒉在复习与梳理中学会联系,进而提高综合分析解题能力。

  教学过程:

  一、复习梳理

  ⒈公式的复习

  我们已经学过各种多边形的面积计算公式,谁来说说这些公式各是什么?它们是怎样推导出来的?

  师生共同进行:边回顾、边画图、边讨论;

  ⒉教师指出:多边形的'面积公式是互相联系,彼此相关的,我们必须以长方形的面积公式为基础,以平行四边形的面积为重点,清楚地把握它们之间的同在联系和区别。

  二、练习巩固

  ⒈独立完成练习十九的第12题--看谁正确率最高!

  要求:开列已知条件;写出相应的面积公式;列式解答。

  ⒉完成第14题

  先议:⑴左图是什么图形?求面积需要哪些条件?怎么取得?⑵右图是什么图形?为什么?求它的面积需要量几个量?把它们分别量出来。

  ⒊完成第13和15题

  在求得面积之后,怎样选择算法求解。

  三、综合提高:

  讨论:

  ⑴平行四边形的底扩大3倍,高不变,面积怎样变化?如果高也扩大2倍呢?

  ⑵三角形的底不变,高缩小2倍,面积怎样变化?如果高缩小2倍,底扩大2倍,情况又怎样呢?

  ⑶一个三角形与一个平行四边形等底等面积,那么三角形底边上的高一定是这个平行四边形高的2倍,为什么?

  四、:

  多边形的面积计算,关键是公式的理解与熟练,同时在选用公式时,尤其注意哪些图形求面积时要÷2。

  五、板书设计:

  梯形面积的计算

  六、教后感:

  2、应用题

  《梯形的面积》数学教案设计 8

  教学内容:

  练习十九第5~10题。

  教学目的:

  通过练习,使学生进一步熟悉梯形面积的计算公式,能够比较熟练地计算梯形的面积。

  教具准备:

  将下面复习中的图画在小黑板上。

  教学过程:

  一、复习。

  1、口算:练习十九的第5题。

  2、出示小黑板。

  师:这是一个梯形图,要求它的面积必须知道什么?(学生回答后,让学生到黑板前量出要求这个图形的面积所需要的线段的长。知道了梯形的上底、下底和高,怎样求出它的面积?用哪个公式?(学生回答后,教师板书:

  S=(a+b)×h÷2)

  这个梯形的面积是多少?(学生独立计算)

  二、做练习十九中的题目。

  1、第7题,出示水渠模型,问:

  这是什么模型?它的'横截面是什么形?

  渠口的宽可以看成是梯形的什么?渠底的宽呢?

  渠深可以看成是梯形的什么?

  (学生独立完成填表)

  2、第8题,先让学生读题,教师说明:这是飞机模型中机翼的平面图。它是由两个完全相同的梯形组成,问:

  现在要求这个机翼平面图的面积,应该怎样求?(先求出一个梯形的面积,再乘以2。)

  看一看还有没有其他的算法?(教师提示:因为飞机机翼是由两个完全一样的梯形组成的,如果设想把这个机翼从中间剪开,成为两个完全一样的梯形,再把其中一个梯形经过平移,使两个梯形拼成一个平行四边形,它的底是100毫米加46毫米,高是250毫米。这个平行四边形的面积和我们所要求的机翼平面图的面积相等。)

  3、第9题,让学生独立做,做完后集体核对。

  4、学有余力的学生做第16题和17题。

  第16题,先让学生弄清楚这道题已知什么,求什么,再引导学生用求未知数的方法求出梯形的高。

  第17题,这一题是求梯形的面积,上底和下底都是已知的,高是未知的。

  高能不能求出来呢?怎样求?

  怎样利用涂色的三角形的条件求出梯形的高呢?

  三、作业。

  练习十九的第6题和第10题。

  《梯形的面积》数学教案设计 9

  教学目标:

  1、通过学生操作拼图,使学生在理解的基础上,总结概括并掌握梯形面积的计算公式,学会用字母表示公式,并能正确计算梯形的面积。

  2、通过多媒体的直观演示,让学生在观察比较、动手操作的基础上,发展学生的空间观念,进一步学习用转化的方法思考问题。

  3、培养学生的分析、综合、抽象、概括以及解决实际问题的能力,培养学生创新意识。

  教学重点:

  掌握梯形面积的计算公式,并能够运用公式正确计算梯形的面积。

  教学难点:

  梯形面积计算公式的推导。

  教学用具:

  计算机课件、实物投影、两个完全一样的一般梯形(若干)、直角梯形、等腰梯形,并标有梯形的各部分名称

  学具:同上、一把剪刀

  教学过程:

  一、复习铺垫

  1、同学们,谁还记得我们认识了哪些平面图形?

  2、在这些图形中,已经学过哪些图形的`面积?谁给大家说一说?

  3、过渡语:学习平行四边形和三角形的面积时,我们是把新的图形转化成学过的图形,推导出面积的计算公式。今天这节课,我们继续用这种方法来研究梯形的面积。

  4、板书课题:梯形面积的计算

  二、合作探究,推导公式

  1、老师给大家几个思考讨论题,请一个同学读一读。出示思考题:

  (1)请你拼一拼、摆一摆、折一折、剪一剪,把梯形转化成学过的图形。

  (2)梯形的面积与转化后图形的面积有什么关系?

  (3)转化后图形的各部分相当于梯形的哪些部分?

  (4)试着推导出梯形的面积公式。

  2、现在同学们小组合作,看看谁能够通过自己的努力,发现梯形面积的计算公式,并按照思考题的顺序进行讨论。

  3、学生拼摆讨论,教师巡视点拨。

  4、汇报拼摆过程。学生前边演示,叙述推导。

  《梯形的面积》数学教案设计 10

  教学目标:

  1、使学生发现梯形面积公式的推导方法,理解公式的形成,并能运用公式解决简单的实际问题,发展实践能力。

  2、通过对面积公式的探索,培养学生观察比较、动手操作的能力,发展空间观念。

  3、结合教学内容,渗透“转化”的教学,培养学生初步的创新思维能力。

  教学重点:

  发现、理解和应用梯形面积计算公式。

  教学难点:

  理解公式的`推导过程

  教具准备:

  计算机软、硬件一套;两个完全一样的直角梯形拼成的长方形;两个完全一样的梯形拼成的平行四边形;标有上、下底和高及数据的一般梯形、等腰梯形、直角梯形各一个。

  学具准备

  每个学生准备两个完全一样的一般梯形、直角梯形、等腰梯形和剪刀。

  教学过程:

  一、迁移诱导,激发参与兴趣

  1、启发学生回忆三角形的面积推导公式。

  2、板书课题,引入新课。

  二、实验操作,引导参与探究

  1、转化

  学生分成四人小组进行学习。

  独立拿出准备好的各种梯形,拼成学过的图形。

  学生拼摆,教师对不同层次的学生,及时给予点拨和鼓励。

  2、观察

  学生分组,结合拼成的平行四边形观察、讨论。教师巡视,注意点拨。

  板书如下:梯形面积 拼成的平行四边形面积的一半

  平行四边形的底 梯形是上底+下底

  平行四边形的高 梯形的高

  3、推导

  学生分组讨论,教师巡视,注意点拨。

  学生反馈,教师注意用规范的语言进行调控。

  板书如下:

  平行四边形面积= 底 × 高

  梯 形 的 面 积=(上底+下底)×高÷2

  S=(a+b)×h÷2

  提问:计算梯形的面积为什么除以2?

  三、反馈调节,巩固参与成果

  1、引导实际应用,巩固梯形面积公式

  2、分层训练,培养能力

  3、发展提高,深化知识

  《梯形的面积》数学教案设计 11

  教学目的:

  使学生进一步掌握梯形面积的计算公式,能正确、熟练地计算梯形的面积。

  教学重点:

  应用所学的知识解决一些实际问题。

  教学准备:

  实物投影仪等。

  练习过程:

  一、基本练习

  1.口算:练习十八第5题。根据学生情况,限时做在课本上,集体订正。

  7.2÷0.122.4÷0.30.2×12.6×5

  0.38×10000.8×2526.1-3.5-7.5

  3.8+2.5+6.210÷2.54.8×0.2+5.2×0.2

  2.看图思考并回答。

  (1)怎样计算梯形的面积?

  (2)梯形面积的计算公式是怎样推导出来的?

  (3)右图所示梯形的面积是多少?

  二、指导练习

  1.练习

  (1)名数的改写方法是什么?根据学生的回答板书:

  除以它们之间的进率

  低级单位高级单位

  乘它们之间的进率

  (2)根据改写的方法将第6题的结果填在课本上。

  3.6公顷=()平方米1平方米=()公顷

  4平方千米=()公顷52公顷=()平方千米

  160平方厘米=()平方分米=()平方米

  0.25平方米=()平方分米=()平方厘米

  (3)集体订正时让学生讲一讲自己的'想法。

  2.练习:科技小组制作飞机模型,机翼的平面图是两个完全相同的梯形制成的(如图)。它的面积是多少?

  (1)生独立审题,分小组讨论解法。

  (2)选代表列出解答算式,不计算。

  (3)由学生讲所列算式的想法,

  (4)指导学生讲“(100+48)×250”为什么不除以2?

  (5)学生计算出它的面积,集体订正。

  三、课堂练习

  1.练习:根据表中所给的数值算出每种渠道横截面的面积。

  渠口宽(米)3.11.82.02.0

  渠底宽(米)1.51.21.00.8

  渠深(米)0.80.80.50.6

  横截面面积

  (平方米)

  生独立解答出结果并填在课本上,集体订正。

  2.练习一个果园的形状是梯形。它的上底是180米,下底是160米,高是50米。如果每棵果树占地10平方米,这个果园有多少平方米?

  《梯形的面积》数学教案设计 12

  一、 教学目标

  1、 在实际情境中,认识计算梯形面积的必要性。

  2、 在自主探索活动中,经历推导梯形面积公式的过程。

  3、 运用梯形面积的计算公式,解决相应的实际问题。

  二、 重点难点

  重点:梯形面积公式的推导过程。

  难点:能运用梯形面积的计算公式,解决相应的实际问题。

  三、 教学准备

  相等梯形若干个、小剪刀、挂图

  四、 教学设计

  (一)复习旧知,铺垫引导

  1、 前面我们推导了平行四边形和三角形面积的计算公式,还记得三角形面积的计算公式是怎么推导出来的吗?(转化成平行四边形)

  2、 把不知道的转化成知道的从而得出结论,是我们常用的探究新知的方法。

  (二)揭示课题,探索新知

  1、 出示主题图:这是一个堤坝的横截面,从图中你得到了哪些信息?(横截面是梯形,上底是20米,下底是80米,高是40米)

  2、 今天我们就一起动手推导梯形面积的计算公式。(板书:梯形的面积)

  3、 下面请同学们拿出准备好的梯形,通过转化的方法,自己动手拼一拼或剪一剪,推导出梯形面积的计算公式。(教师巡视指导)

  4、 小组内交流方法。

  5、 学生汇报,教师总结。

  (1)平移法

  用两个大小完全一致的.梯形。经过旋转、平移组成平行四边形。

  (2)分割法

  将梯形分割成两个三角形。

  (3)割补法

  取两条边的中点(中位线)剪开,经过旋转、平移组成平行四边形。

  得出结论: 梯形面积=(上底+下底)高2

  字母表示:S=(a+b)h2

  (三)巩固练习

  1、 P28试一试。(在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解)

  2、 P28练一练1题,继续巩固练习。

  (四)总结全文

  1、 这节课我们学习了什么?

  2、 梯形面积公式的推导〈梯形面积=(上底+下底)高2〉

  五、 板书设计

  梯形的面积

  梯形面积=(上底+下底)高2

  字母表示:S=(a+b)h2

  六、 教学反思

  本节课的教学,我是采取学生亲自动手操作实践来得出梯形的面积公式。但在学生探索的时候,学生的思维大多只停留在平行四边形上,也就是书中的第一个例子。在课堂练习的时候,由于公式记得不牢,在求面积的时候经常忘了除2。

  《梯形的面积》数学教案设计 13

  教学内容:

  人教版小学数学教材五年级上册第95页主题图、96页例3、第96页做一做,

  教学目标:

  1、知识与技能:通过观察、猜想、操作等数学活动,推导出梯形的面积计算公式。发展空间观念和推理能力渗透转化的数学思想方法。并能进一步体会利用转化的方法解决问题

  2、过程与方法:能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。

  3、情感态度与价值观:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神,获得数学学习的乐趣。

  教学重点:

  掌握梯形面积的计算公式,并会用公式解决实际问题。

  教学难点:

  理解梯形面积公式推导方法的多样化,体会转化的思想。

  考点分析:

  会用梯形面积公式解决实际问题。

  教学方法:

  游戏引入新知讲授巩固总结练习提高

  教学用具:

  课件、多组两个完全相同的`梯形。

  教学过程:

  一、提出问题(课件出示教材第95页的主题图)。

  教师:同学们在图中发现了什么?

  教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?

  二、通过旧知迁移引出新课。

  教师:同学们还记得平行四边形和三角形的面积怎么求吗?

  1、指名能说出平行四边形面积公式及三角形面积公式。并能简要说出面积公式推导过程。

  2、课件出示平行四边形面积、及三角形面积公式推导的过程,教师揭示转化方法:拼合法、割补法

  3、教师:前面我们学习了平行四边形的面积,又学习了三角形的面积,请同学们想一想,我们能用学过的方法推导出梯形的面积计算公式吗?

  三、揭示课题;

  根据学生的回答,引出新课,梯形的面积。

  板书课题--梯形的面积。

  四、新知探究

  1、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到求图形面积的计算方法,今天我们要研究的梯形面积,可以怎样转化呢?下面我们就来实践操作一下吧。

  2、请同学们打开学具袋,看看里面的梯形有什么特点?

  《梯形的面积》数学教案设计 14

  教学目标:

  1、通过练习,使学生进一步理解并掌握梯形的面积计算公式,能熟练地进行梯形的面积计算。

  2、通过尝试练习,使学生能根据要求求梯形的底或高。

  教学重点:根据要求,求梯形的底或高。

  教学过程:

  一、复习有关知识

  1、先让同桌说一说梯形面积的'推导过程,再指名说一说。

  2、计算下面梯形的面积。

  (1)上底48米,下底56米,高35米。

  (2)上底124米,下底76米,高82米。

  3、出示:

  ①一个梯形的面积是640平方厘米,上底60厘米,下底20厘米。求高。

  ②一个梯形的面积是100平方分米,高10分米,下底13分米。求上底。

  (1)让生尝试做,可以同桌讨论。

  (2)检查:

  让学生充分发表自己的意见,可以让他们自由地到黑板上把自己的做法写出来,再向其他同学介绍。

  640×2÷(60+20)为什么面积要先乘以2。

  =1280÷80

  =16(厘米)

  (3)讨论:①怎样求梯形的底或高?(突出先要用面积乘以2)

  二、练习

  1、计算下面各梯形的面积。

  (1)上底80米,下底50米,高60米。

  (2)上底15分米,下底9分米,高比下底长1分米。

  (3)下底24厘米,上底是下底的一半,高1分米。

  2、先量出有关线段的长度,再算出下面图表的面积。

  3、一座小型拦河坝,横截面的上底5米,下底131米,高21米。这座拦河坝的横截面积是多少?

  4、一块梯形稻田,上底长8米,下底比上底长1.2米,高是上底的2倍。这块稻田的面积是多少平方米?

  5、一块梯形草坪的面积是90平方米,上底是6米,下底是12米,高是多少米?

  6、一块梯形的果园,它的上底是160米,下底是120米,高30米。如果每棵果树占地10平方米,这个果园共有树多少棵?

  7、花圃的温室侧面如图,每平方米用砖130块。这个侧面用砖多少块?

  1米4米

  8米

  三、总结。

  四、作业。

  《梯形的面积》数学教案设计 15

  练习要求:

  使学生进一步掌握梯形面积的计算公式,能正确、熟练地计算梯形的面积。

  练习重点:

  应用所学的知识解决一些实际问题。

  练习过程:

  一、基本练习

  1.口算:练习十八第5题。根据学生情况,限时做在课本上,集体订正。

  7.2÷0.122.4÷0.30.2×12.6×5

  0.38×10000.8×2526.1-3.5-7.5

  3.8+2.5+6.210÷2.54.8×0.2+5.2×0.2

  2.看图思考并回答。

  (1)怎样计算梯形的面积?

  (2)梯形面积的计算公式是怎样推导出来的?

  (3)右图所示梯形的面积是多少?

  二、指导练习

  1.练习十八第6题,名数的改写。

  (1)名数的改写方法是什么?根据学生的回答板书:

  除以它们之间的进率

  低级单位高级单位

  乘它们之间的进率

  (2)根据改写的方法将第6题的结果填在课本上。

  3.6公顷=()平方米1平方米=()公顷

  4平方千米=()公顷52公顷=()平方千米

  160平方厘米=()平方分米=()平方米

  0.25平方米=()平方分米=()平方厘米

  (3)集体订正时让学生讲一讲自己的想法。

  2.练习十八第8题:科技小组制作飞机模型,机翼的平面图是两个完全相同的梯形制成的.(如图)。它的面积是多少?

  (1)生独立审题,分小组讨论解法。

  (2)选代表列出解答算式,不计算。

  (3)由学生讲所列算式的想法,

  (4)指导学生讲“(100+48)×250”为什么不除以2?

  (5)学生计算出它的面积,集体订正。

  三、课堂练习

  1.练习十九第7题:根据表中所给的数值算出每种渠道横截面的面积。

  渠口宽(米)

  3.1

  1.8

  2.0

  2.0

  渠底宽(米)

  1.5

  1.2

  1.0

  0.8

  渠深(米)

  0.8

  0.8

  0.5

  0.6

  横截面面积(平方米)

  生独立解答出结果并填在课本上,集体订正。

  2.练习十八第10题:一个果园的形状是梯形。它的上底是180米,下底是160米,高是50米。如果每棵果树占地10平方米,这个果园有多少平方米?

  四、作业

  练习十九第9题。

  《梯形的面积》数学教案设计 16

  教学目标:

  1、让学生自己动手拼一拼、议一议、推一推,得出梯形的面积计算公式。

  2、培养学生初步的动手能力和推导能力,学会学习。

  教学重点:

  让学生参与到整个学习过程中。

  教学过程:

  一、让学生自主探讨,得出梯形面积的计算公式。

  1、问题引入,激发学生求知的欲望:

  今天我们要学习梯形的面积计算,请你们想一想,老师不讲,你们能不能自己探索出梯形的面积计算方法?请你们4人一小组讨论,看哪一小组合作最愉快、最有效。

  2、学生4人一小组进行合作探讨,师巡视。

  (让每个学生事先准备2个完全一样的梯形)

  3、检查反馈:让有结论的小组派代表上讲台给其他同学介绍一下。(主要突出以下几个环节)

  (1)拼一拼:

  上底上底下底

  高高

  下底下底上底

  上底上底下底

  高高

  下底下底上底

  (2)比一比:

  梯形的上底、下底合起来就是平行四边形的底;梯形的高就是平行四平形的高,梯形的面积是拼成的平行四边形面积的一半。

  (3)算一算:

  先让学生量出有关的长度,如:

  单位:厘米

  12

  8

  22

  拼成的平行四边形的面积:梯形的面积是平行四边形面积的一半:

  (12+22)×8272÷2

  =34×8=136(平方厘米)

  =272(平方厘米)

  (4)推一推:

  梯形的面积=(上底+下底)×高÷2

  字母公式为:S=(A+B)H÷2

  4、再让生互相说一说这个公式的推导过程。

  5、例:一座水电站的'拦河坝,它的横截面是梯形,上底6米,下底130米,高20米。它的横截面的面积是多少?

  (1)让生独立做。

  (2)检查:

  (6+130)×20÷2

  =136×20÷2

  =1360(平方米)

  二、练习

  1、口算下面每个梯形的面积。

  上底(米)

  16

  28

  9

  7

  下底(米)

  14

  42

  31

  13

  高(米)

  8

  12

  14

  10

  面积(平方米)

  2、计算下面每个梯形的面积。

  34米

  2米

  40厘米60厘米16米8米

  6米

  24米40厘米

  3、一块梯形钢板,上底长4分米,下底长6分米,高8分米,求这块钢板的面积。

  三、总结。

  梯形的面积计算练习

  《梯形的面积》数学教案设计 17

  教学目标

  1、使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握梯形的面积公式,能正确地计算梯形的面积,并应用公式解决实际问题。

  2、使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。

  教学

  重难点

  教学重点:理解并掌握梯形面积的计算公式

  教学难点:理解梯形面积公式的推导过程

  课前准备

  多媒体课件

  教学过程

  师生活动

  思考与调整

  一、复习导入:

  1、回顾三角形面积公式的推导过程

  2、导入:今天我们继续运用这种方法来研究梯形面积的计算。

  二、探究新知:

  1、教学例6:

  (1)出示例6:

  师:用例6中提供的梯形拼成平行四边形。(注意:组内所选的梯形都要齐全)

  (2)小组交流:

  你认为拼成一个平行四边形所需要的两个梯形有什么特点?要使学生明确:用两个完全一样的梯形可以拼成一个平行四边形。

  (3)测量数据计算拼成的平行四边形的面积和一个梯形的面积并填表。

  师:如何计算一个梯形的面积?从表中可以看出梯形与拼成的平行四边形还有怎样的关系?(小组交流)

  得出以下结论:

  这两个完全一样的梯形,无论是直角梯形、等腰梯形、还是一般的梯形,都可以拼成一个平行四边形。

  这个平行四边形的底等于梯形的`上底+下底

  这个平行四边形的高等于梯形的高

  因为每个梯形的面积等于拼成的平行四边形面积的一半

  所以梯形的面积=(上底+下底)×高÷2

  板书如下:

  平行四边形的面积=底×高

  2倍一半

  梯形的面积=(上底+下底)×高÷2

  师生活动

  思考与调整

  (4)用字母表示三角形面积公式:S=(a+b)h÷2

  三、巩固练习:

  1、完成试一试:

  1、完成练一练:

  (1)学生计算后提问:用上、下底的和乘高后,为什么还要除以2?

  (2)结合直观的图形或教具演示,简单介绍横截面的含义,再让学生结合公式进行计算。

  四、全课总结:

  师:通过今天的学习有哪些收获?

  板书设计:梯形面积的计算

  转化

  已学过的图形新图形

  拼摆

  因为平行四边形的面积=底×高

  2倍一半

  所以梯形的面积=(上底+下底)×高÷2

  教学得与失:

【《梯形的面积》数学教案设计】相关文章:

小学数学《梯形面积的计算》说课稿08-02

《梯形的面积》的小学数学说课稿05-18

小学数学梯形的面积教学设计10-08

《梯形面积计算》数学教学反思07-31

小学数学《梯形面积计算》说课稿09-27

小学数学“梯形面积”教学设计10-23

梯形面积说课稿10-05

《梯形的面积》说课稿08-08

《梯形面积》说课稿09-06