六年级数学《分数基本性质的地位与作用》教案

时间:2025-07-16 14:06:40 小英 教案 我要投稿
  • 相关推荐

六年级数学《分数基本性质的地位与作用》教案(精选12篇)

  作为一位无私奉献的人民教师,就难以避免地要准备教案,教案是备课向课堂教学转化的关节点。教案应该怎么写呢?以下是小编精心整理的六年级数学《分数基本性质的地位与作用》教案,仅供参考,欢迎大家阅读。

六年级数学《分数基本性质的地位与作用》教案(精选12篇)

  六年级数学《分数基本性质的地位与作用》教案 1

  教学目标:

  结合趣味故事经历认识分数的基本性质的过程。

  初步理解分数的基本性质,会应用分数的基本性质进行分数的改写。

  经历观察、操作和讨论等学习活动,体验数学学习的乐趣

  教学重点: 理解掌握分数的基本性质。

  教学难点: 归纳分数的性质。

  学生准备: 长方形纸片。

  一、创设故事情境,激发学生学习兴趣并揭示课题。

  唐僧师徒四人在路上遇到了一个巨大的西瓜,大家决定平均分成四块。孙悟空机智地将西瓜切成四块,但猪八戒贪吃,偷偷吃了一块。接着,大家又把西瓜平均分成八块,这次猪八戒更加贪吃,吃掉了其中的两块。最后,西瓜被分成了十六块,猪八戒再次偷偷吃了四块。通过这个故事,让学生在实践中体会到分数的基本性质,引发他们对数学的探究兴趣。看完故事后,可以向学生提问:你从这个故事中了解到了哪些数学信息?你想到了什么问题?

  让我们来讨论八戒没有多吃到饼的事情。我们可以通过折一折、分一分、比一比的方式来说明。让我们亲自动手操作,将一块饼折成三份,然后比较八戒吃了一份之后,剩下的两份和原来的一块饼是相等的。尽管分子和分母不同,但这两个分数是相等的,这是为什么呢?让我们通过课件直观感受这个规律,揭示其中的奥秘。

  二、小组合作,探究新知:

  1、动手操作、形象感知

  出示课件,让学生观察讨论图中分数的涂色部分是多少?

  A、谈话:请同学们拿出课前准备好的一张正方形的纸,你能先对折,并涂出它的1/4吗?

  B、追问:你能通过继续对折,每次找一个和1/4相等的其他分数吗?

  C、好的,我来修改一下:学生们可以尝试将一张正方形纸张对折多次,每次对折后,正方形被平均分成了几份?涂色部分又有几份呢?可以让不同的同学展示不同的对折方法,看看他们得到的结果有何不同。同时,大家可以思考一下:涂色的部分可以用什么分数来表示?这个分数与1/4是否相等呢?

  2、观察比较、探究规律

  (1)通过动手操作,你认为它们谁大?请到展示台上一边演示一边讲一讲。

  (2既然这三个分数相等,那么我们可以用什么符号把它们连接起来?

  (3)这三个分数的分子、分母都不相同,但它们的大小却相等。你们能找出它们之间的变化规律吗?请同学们四人为一组,讨论这两个问题。

  (4)通过从左到右的观察、比较、分析,你发现了什么?

  使学生认识到这四个正方形同样大,虽然平均分的份数不一样,但阴影部分的面积相等,四个分数也相等。课件出示连等式子。

  【通过展示不同的对折方法,使学生体会解决问题方法的多样性,拓展学生的`思维。】

  3引导观察:请大家观察每个等式中的两个分数,它们的分子、分母是怎样变化的?

  观察思考后。在课文上填空,再在小组内交流。然后教师再集中指导观察:

  从左往右看:将1/4扩大4倍,得到2/8;分子和分母同时乘以2,得到4/16。变化规律是分子和分母同时扩大相同的倍数。从右往左看:将4/16缩小为1/4,将2/8缩小为1/4。变化规律是分子和分母同时缩小到最简形式。

  4、归纳规律

  提问:综合以上两种变化情况,谁能用一句话概括出其中的规律?

  当我们将分数的分子和分母同时乘或除以相同的数(0除外),分数的值不会改变,这是分数的基本性质。

  6、小结

  同学们在这节课的学习中表现得很出色,说一说你有什么收获或体会?

  【通过小结,同学们,今天我们学习了关于圆的周长和面积的知识。通过课堂学习,我们了解到了如何计算圆的周长和面积,并且掌握了相应的计算方法。在课堂练习中,大家也积极参与,对这些知识有了更深入的理解。接下来,我们可以继续拓展这个主题,比如探究圆与其他图形的关系,或者深入了解圆的性质和应用。希望同学们能保持学习的热情,积极探索更多有关圆的知识。下节课我们将继续深入学习,一起探究更多有趣的数学知识。期待在下节课与大家再次相见!

  四、巩固强化,拓展应用

  多样的练习可以让学生及时巩固所学知识,又调动了学生学习的积极性。

  五、游戏找朋友。

  六、布置作业:

  在备课之前,精心设计课堂内容和教学思路,准备好所需教具。课前,可以通过一些活动来活跃课堂气氛。通常情况下,课堂使用黑板为主,但也可以偶尔利用多媒体设备进行教学。学生们对此都很感兴趣,特别是在创设情景的时候,他们会很投入。随后的动手操作环节也很重要。不过学生们可能会在表达方面有所保留,不太敢大胆发言。他们对问题的回答可能不够清晰。在引导学生主动探索、逐步获取规律的过程中,教师起到了重要的作用。最后,通过学生们一一解答并归纳分数性质,如从左到右分子分母都变大但分数大小不变,从右到左分子分母都变小但分数大小不变,让学生掌握了这些规律。教师强调让学生记住分数的性质关键词,如“都”、“乘以或除以”、“相同的数”、“零除外”,并通过多层次的巩固练习加深他们的理解。最后,通过愉快的找朋友游戏让学生轻松地应用所学知识。

  六年级数学《分数基本性质的地位与作用》教案 2

  教学目标:

  知识与技能:

  初步理解分数的基本性质,会应用分数的基本性质进行分数的改写。

  过程与方法:

  结合趣味故事和填数活动,经历认识分数的基本性质的过程。

  情感态度与价值观:

  积极参与数学活动,发展学生数学思维,感受分数基本性质的合理性和确定性。

  教学重点:

  会应用分数的基本性质进行分数的改写。

  教学难点:

  理解分数的基本性质。

  教学过程:

  一、故事引入

  同学们,你们爱看《西游记》吗?唐僧、孙悟空、猪八戒、沙和尚在去西天取经的过程中,路过了很多地方,虽然经历了很多磨难,但是也得到了很多人的帮助。下面我们来欣赏一下《西游记》的动画片。

  二、探求新知

  1、课件出示配乐故事和相应画面。

  唐僧师徒四人去西天取经,有一天,路过女儿国,国王给了他们师徒四人一块饼。唐僧说:"咱们把这块饼平均分成四块,每人一块吧。"猪八戒听见了,急忙说:"一块太少了,师傅,我吃得多,就多分给我一块吧。"唐僧看了看这贪吃的徒弟,不知道怎么办好,孙悟空说:"师傅,那就把这块饼平均分成八块,给他二块吧。"唐僧笑了笑说:"你这个猴子,真狡猾。"

  [上课时先看一段故事,学生一定非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。]

  师:从上面的故事中,你了解到那些数学信息,想到了什么问题?

  生1:唐僧要把饼平均分成四块,每人一块,很公平。

  生2:孙悟空说把饼平均分成八块,给猪八戒两块。

  生3:我知道猪八戒没有多吃到饼。

  师:你们同意他的说法吗?让学生讨论:八戒到底有没有多吃到饼。

  引导学生小组合作想办法证实自己的想法。

  [分组讨论问题充分体现了学生合作学习的良好氛围,激发了他们的求知欲,学生在激烈的讨论中思维能力得到进一步的提升。]

  汇报:

  生:我们组用画图的方法证明猪八戒没有多吃到饼。

  展示了本小组的图

  师:非常好,清楚明白,还有其他的方法吗?

  学生们都认同他们组的做法

  师:想一想我们上节课学得分数与除法的关系,能不能把分数转化成除法进行证明?

  生:14=1÷4,1和4都同时扩大2倍,变成2÷8,商不变。2÷8写成分数形式是。

  〔师进一步引导,培养学生知识的迁移能力。〕

  最后得出结论:等于,八戒没有多吃到饼。

  2、看图填数让学生用分数表示图中的涂色部分,填完后汇报。

  师:观察上面的图和分数,说一说你发现了什么?

  生:这几个分数都相等。

  3、议一议

  让学生仔细观察,看一看分数的分子和分母怎样变化,分数的大小不变?和同桌讨论一下。

  学生试着归纳:分数的分子和分母都乘或除以相同的数,分数的大小不变。

  师:"根据同学们的回答,老师也进行了总结 。"

  师出示分数的基本性质贴在黑板上,指名学生读,学生自由读。

  师告诉学生这就是分数的基本性质。

  对照分数基本性质,让学生说说我们自己总结的比分数的`基本性质少了什么?

  生:我发现少了"零除外"

  师:想一想:为什么性质中要规定"零除外"?

  生:分数的分母不能为零,所以分母不能乘或除以零。

  [新知识力求让学生主动探索,逐步获取。"孙悟空分饼"和看图填数得出的三组相等的分数为学生探索新知提供了材料,议一议是学生探求新知、独立思考的指南,引导学生逐步展开的充分的讨论,帮助学生一步步得出结论。]

  三、试一试

  1、把34化成分母是12而大小不变的分数。

  思考:要把34化成分母是12而大小不变的分数,分子、分母怎么变化?变化的依据是什么?

  2、讨论:猴子运用什么规律来分饼的?如果猪八戒要三块,猴子怎么分才公平呢?如果要四块呢?

  [总结出分数的基本性质后,再让学生说出孙悟空的想法,并回答如果猪八戒要三块饼、四块饼,孙悟空怎么办?既前后照应,又让学生在帮孙悟空想办法的过程中,运用新知解决实际问题。]

  四、多层练习,巩固深化

  以游戏的方式完成,教师说分母或分子,学生说出相应的分子或分母,使组成的分数与给定的分数相等。

  [练习设计由易到难,由浅入深,既巩固新知,又发展思维。]

  六年级数学《分数基本性质的地位与作用》教案 3

  教学内容:教材第78~79页分数的基本性质和数的改写方法、“练一练”,练习十五第11—18题。

  教学要求:

  1.使学生加深理解分数的基本性质,认识分数与小数基本性质的联系,能比较熟练地应用分数的基本性质进行通分和约分。

  2.使学生进一步掌握小数、分数和百分数互化的方法,能比较熟练地进行互化。

  教学过程:

  一、揭示课题

  1.学生练习。

  (1)下面各数有什么关系?为什么,0.3 O.30 O.300

  学生回答后板书:0.3=O.30=O.300。指出;在小数的末尾添上。或去掉O,小数的大小不变。这是小数的性质。

  (2)提问:分数与除法有什么关系?

  谁来说一说除法的商不变规律是什么?

  2.引入课题。

  在除法里有商不变的规律,根据分数与除法的关系,在分数里也有类似的规律,这就是我们今天先要复习的分数的基本性质。(板书:分数的基本性质)

  二、复习分数的基本性质

  1.说明分数的基本性质。

  提问;你能根据除法商不变的规律,说出分数的基本性质吗?(出示分数的基本性质)谁来用分数举例说出分数的基本性质?(根据回答板书分数等式)大家来把第78页上的例子填写完整。填写后集体校对。说明:这个例子也表示分数的分子、分母都乘或除以。以外的数,大小不变。

  2.学生练习。

  (1)做“练一练”第1题。

  让学生填在课本上,然后集体校对。说明:根据分数的基本性质,可以把一个分数写成和原来分子、分母不同,但大小不变的分数。

  (2)做练习十五第12题。

  小黑板出示,指名口答,老师板书。

  3.认识分数与小数性质的联系。

  提问:大家思考一下,这里的O.3=O.30=0.300能不能改写成用分数表示?大家仔细观察,上面等式表示什么,下面等式表示什么,改写后得出的这两个等式说明什么?为什么小数的性质和分数的基本性质会是一样的?指出:从上一节课我们知道,小数实际上是分母是10、100、1000……的分数的另一种表示形式,所以小数的性质和分数的基本性质是一致的。小数末尾添上O,实际上就相当于分子、分母同时乘l0,或100、1000……。这样的数,所以小数大小不变;小数末尾去掉O,实际上就相当于分子、分母同时除以10,或100、1000……这样的`数,所以小数大小也不变。

  4.复习通分和约分。

  (1)提问:分数的基本性质有哪些应用?

  (2)做“练一练”第2题。

  指名两人板演,其余学生做在练习本上。集体订正。提问,通分和约分有什么联系?(都应用分数的基本性质)通分和约分有什么不同?

  三、复习小数、分数和百分数互化

  1.说明:我们已经复习了分数的基本性质及它的应用,接下来再复习小数、分数和百分数的改写。(板书:数的改写)

  2.整理方法.

  提问:小数和分数之间怎样互化?(照第79页图解板书)你能举出例子吗?(板书所举的例子)你明白为什么这样改写吗?(说明理由)小数和百分数之间怎样互化?(照图解板书)谁来举出小数和百分数互化的例子?(板书例子)说明:因为两位小数就是百分之几,所以两位小数的部分就是百分之几分子里的整数部分,而百分之几用小数表示,去掉百分号,就要把原来分子部分缩小100倍。分数和百分数怎样互化,(照图解板书)谁来举例说明?(板书例子)为什么分数和百分数要这样改写,3.做“练一练”第3题。

  让学生做在课本上。小黑板出示,指名口答,老师板书。

  4.学生练习。

  (1)做练习十五第13题。

  指名学生口答。

  (2)提问:分数都能化成有限小数吗?怎样的分数可以化成有限小数?指出:根据小数、分数和百分数之间的联系,小数、分数和百分数之间是可以互化的。我们可以通过数的互化解决不同数的大小比较。

  (3)思考练习十五第15题。

  指名说一说每道题可以怎样比较大小。

  四、综合练习

  1.让学生把练习十五第16题做在课本上。

  小黑板出示,学生口答,老师板书。

  2.做练习十五第17题。

  提问:你估计一下,摸出红铅笔的次数大约是多少?为什么?根据你的估计算一算,摸出红铅笔的次数大约占总次数的几分之几?还可以怎样想到大约占总次数的 ?

  五、课堂小结

  1.这节课复习了哪些内容?你有哪些收获?

  2.让学生说一说常用数据的结果。

  六、布置作业

  课堂作业:练习十五第14、15题。

  家庭作业:练习十五第18题。

  六年级数学《分数基本性质的地位与作用》教案 4

  教学内容:

  教材第98-79页练一练,练习十五第10-18题。

  教学要求:

  1、使学生加深理解分数的基本性质,认识分数与小数基本性质的联系,能比较熟练地应用分数的基本性质进行通分和约分。

  2、使学生进一步掌握小数、分数和百分数互化的方法,能比较熟练地进行互化。

  教学过程:

  一、揭示课题

  1、学生练习

  (1)下面各数有什么关系;为什么?

  0.30.300.300

  学生回答后板书:0.3=0.30=0.300

  指出:在小数的末尾添上0或者去掉零,小数的大小不变。这是小数的性质。

  (2)提问:分数与除法有什么关系(板书A÷B=(B≠0))

  谁来说说商不变的规律是什么?

  3、引入新课。

  在除法里有商不变的规律,根据分数与除法的关系在分数里是不是有类似的规律?这就是我们今天先要复习的分数的基本性质。(板书分数的基本性质)

  三、复习分数的.基本性质。

  1、说明分数的基本性质。

  提问:你能根据商不变的规律,说出分数的基本性质吗?

  出示人分数的基本性质。

  谁来用分数举例说出分数的基本性质。

  把78页的例子填写完整,集体校对。

  2、学生练习。

  (1)“练一练”第1题。

  学生填在课本上指名口答,集体订正。

  3、认识小数的性质与分数的基本性质的联系。

  把0.3=0.30=0.300改写成分数

  通过观察、上面等式表示什么,下面等式表示什么,改写后得出这两个等式说明什么?为什么小数性质和分数的基本性质会是一样的呢?

  指出:(1)小数实际上是分母是10、100、1000……的分数,所以小数的性质和分数的性质是一致的。

  (2)小数的末尾添上。实际上就相当于分子、分母同时乘以10或100、1000……这样的数相反也是除以10、100、1000……这样的数所以小数的大小也不变。

  4、复习通分和约分。

  1、分数的基本性质有哪些应用?(板书:通分、约分)

  2、做“练一练”第2题。

  两人板演,齐练,集体订正。

  四、复习小数、分数和百分数的互化。

  1、(板书:数的改写)

  2、整理方法。

  自学课本79页的回答,教者逐一板书如课本图。

  3、做“练一练”第3题

  学生做在课本上,检查订正。

  5、学生练习。

  (1)练习十五第12题,指名口答

  (2)提问:分数都能化成有限小数吗?

  (3)思考怎样的分数可以化成有限小数?

  (4)思考练习十五第15题。

  说一说,每道题可以怎样比较大小。

  四、综合练习

  1、练习十四第16题(口答)

  2、练习十四第17题。

  五、课堂小结(略)

  六、课堂作业。

  练习十五12、14、18题。

  六年级数学《分数基本性质的地位与作用》教案 5

  教学内容

  教科书第80~81页,练习十六的习题.

  教学目的

  1.使学生掌握整除、约数和倍数、质数和合数等概念,知道它们之间的联系和区别.掌握能被2、5、3整除的数的特征.会分解质因数.会求最大公约数和最小公倍数.

  2.使学生在理解的基础上掌握分数、小数的基本性质.

  教学过程

  一、数的整除

  1.整除的意义.

  教师:想一想,什么叫做整除?指名回答.

  教师进一步强调:整除中说的数是什么数?(整数.)

  商是什么数?(整数.)有没有余数?(没有余数.)

  教师:什么叫做除尽?(两数相除,余数是0.)

  整除和除尽有什么联系和区别?指名回答.教师根据学生的回答,整理出下表:

  被除数 除数 商 余数

  整除 整数 不等于O的整数 整数 O

  除尽 数 不等于O的数 数 O

  教师:可以看出整除是除尽的一种特殊情况.

  2.能被2、5、3整除的数的特征.

  教师:我们已经学过能被2、5、3整除的数的特征,同学们还记得吗?指名说一说.然后提问:

  能被2、5整除的数,在判别方法上有什么共同的地方?(都根据个位数进行判别.)

  能被3整除的数,在判别方法上与能被2、5整除的数有什么不同?气根据各个数位上的数之和进行判别.)

  教师:什么叫做奇数?什么叫做偶数?

  根据什么来判断一个数是奇数还是偶数?

  3.约数和倍数.

  教师:根据整除的概念可以得到约数和倍数的概念.什么叫做约数?什么叫做倍数?指名说一说.(如果a能被b整除,a就叫做b的倍数,b就叫做a的约数.)为了使学生进一步明确约数和倍数是相互依存的,教师可以接着提问:

  能说6是约数,15是倍数吗?应该怎么说?

  教师说明:在研究约数和倍数时,我们所说的数一般只指自然数,不包括0.

  教师:一个数的约数的个数是怎样的?(有限的'.)

  其中最小的约数是什么数?最大的约数是什么数?(1,这个数本身.)

  一个数的倍数的个数是怎样的?(无限的.)

  其中最小的倍数是什么数?(这个数本身.)

  做练习十六的第2题.让学生直接做在书上.教师可以说明做的方法:在含有约数2的数下面写2,在3的倍数下面写3,在能被5整除的数下面写5,然后再进行判断.集体订正.

  4.质数和合数.教师指名说一说质数、合数的概念.可有意识地让学习有困难的学生说,其他同学进行补充.

  教师:怎样判断一个数是质数还是合数?(检查这个数有约数的个数,或查质数表.)指名说一说30以内有哪些质数.

  让学生进行判断:一个自然数如果不是质数,那么一定是合数.学生判断后,教师说明:1既不是质数,也不是合数.

  5.分解质因数.

  指名说一说质因数、分解质因数的含义.

  做练习十六的第5题.学生独立解答,教师巡视,集体订正.

  6.公约数、最大公约数和公倍数、最小公倍数.

  (1)复习概念.

  教师:什么叫做公约数?什么叫做最大公约数?(几个数公有的约数,叫做这几个数的公约数;其中最大的一个叫做这几个数的最大公约数.)怎样求几个数的最大公约数?让学生举例说明.

  什么叫做公倍数?什么叫做最小公倍数?怎样求几个数的最小公倍数?让学生举例说明.

  教师:什么样的数叫做互质数?(公约数只有1的两个数叫做互质数.)

  质数和互质数有什么区别?(质数是一个数,只有1和它本身两个约数;互质数是两个数,只有公约数1.)

  两个不同的质数一定互质吗?(两个不同的质数一定互质.)

  互质的两个数一定都是质数吗?(不一定,如4和9互质,4、9都是合数.)

  (2)课堂练习.

  做练习十六的第1题.先让学生独立判断,集体订正时,让学生说一说判断的理由.

  做练习十六的第4题.学生独立解答,教师巡视,集体订正.教师根据前面的教学,整理出教科书第80页的概念联系图.也可以把该图变化成如下形式.

  六年级数学《分数基本性质的地位与作用》教案 6

  分数基本性质:分数的分子和分母都乘或除以相同的数(0除外),分数的大小不变。

  根据分数的基本性质,我们能够把任何一个分数变换成另一个分数单位的等值分数。也就是说,分数基本性质解决了分数单位的换算问题。统一了分数单位,异分母的分数才能进行加减运算。

  例如,+=+

  =×2+

  =×(2+1)

  =。

  在分数的运算中,把异分母分数变成同分母的分数的过程,叫通分;通分是把较小的分数单位变换为较大的分数单位。在分数的运算中,有时也需要把较大的分数单位变换成较小的分数单位,这个过程叫约分。

  例如,×=

  =

  =。

  通分和约分的理论根据都是分数的基本性质。

  分数基本性质还是分数集合分类的一个标准。根据分数基本性质,可以把分数集合中所有等值分数都归为一类,于是分数集合就被分成无数个这样的等值分数的类别。如,上述和属于同一类,和属于同一类。

  在分数集合的每一个等值分数的类别中,都有且只有一个最简分数。所谓最简分数,就是它的分子和分母除1以外再也没有其他的公因数了。如,上述、都分别是它们所在的等值分数类别中的最简分数。

  在分数集合中,最简分数就是每一个等值分数类别的代表。确定这一个代表的重要意义是,确保分数运算与自然数运算一样,运算结果具有单值性(唯一性)。这就是为什么要对运算结果进行约分,直到最简分数为止。

  小数单位0.1、0.01、......分别与分数单位、、......是等价的,小数是特殊的分数。小数与分数可以互相转化。

  例如,把0.25化为分数。

  方法1:(根据小数的意义)

  0.25=0.01×25

  =×25

  =

  =。

  方法2:(把小数视为分母是1的分数)

  0.25=

  =

  =

  =。

  方法1和方法2中,每一步都是可逆的,所以如果把化为小数,也有与上述对应的两种方法。此外,把分数化为小数还可以直接利用除法,即=1÷4=0.25。

  在上述两种方法中,分数的基本性质都发挥了作用。

  分数基本性质与商不变规律,事实上是从不同的形式表示相同的规律。本质相同而形式不同,主要是适应不同的情境。所以,从商不变规律的重要性亦可反观分数基本性质的重要性。

  遇到小数除法,根据商不变规律可以转化为整数除法,从而以整数除法为基础把把小数除法与整数除法统一起来。

  例如,2.4÷0.4=(24×0.1)÷(4×0.1)=24÷4=6;

  或者,2.4÷0.4=(2.4×100)÷(0.4×100)=24÷4=6.

  如果把2.4÷0.4写成分数形式,也未尝不可,不过将出现被称为“繁分数”的分数形式。把繁分数化为简单分数,也必须根据分数的基本性质。

  例如,=

  =

  =6.

  有了“商不变规律”,在算式的等值变形中可以避免出现繁分数的形式,所以繁分数的概念很早以前就已经不出现在小数数学的教科书中了;即使出现了“繁分数”,我们就把它当作一般分数来对待,也不必专门为之增加一个新名称。

  当沟通了分数、除法与比的本质的联系后,我们可以想到,其实比也有一个与分数基本性质等价的基本性质。即比的前项与后项都乘或除以相同的数(0除外),比值不变。

  根据比的这一基本性质,比可以进行等值变形。在比的实际应用中,如果不掌握比的等值变形,就会寸步难行。不过,比的等值变形不能局限于比的化简。在笔者《分数认识的三次深化与发展》中,已经说明把按比分配转化为分数问题来解决的时候,事实上要把整数比转化为分数比的形式,而且这些表示部分与整体关系的分数的总和还必须等于1(即部分之和等于整体)。

  下面再看两个实例,进一步体会比的必要性。

  例1一种混凝土是由水泥、沙子和石子混合成的,其中水泥与沙子的比是1︰1.5,沙子与石子的比是1︰。这种混凝土中水泥、沙子和石子的比是多少?

  问题中两个已知的比,分别表示混凝土中两个成分的比,而且这两个比的基准不一致。解决这个问题的关键是统一比的基准。因为这两个比中都含有沙子的.成分,所以选择沙子为统一的基准,就能把两个比统一起来。

  解:水泥︰沙子=1︰1.5=10︰15=︰1;

  沙子︰石子=1︰。

  所以,水泥︰沙子︰石子=︰1︰=2︰3︰5。

  当某种混合物的成分多于两种,并要表示它各种成分之间的倍比关系时,比的表示形式就得天独厚志显示出它的优越性。

  例2(阿拉伯民间流传的数学故事)有一位阿拉伯老人,生前养有11匹马,他去世前立下遗嘱:大儿子、二儿子、小儿子分别继承遗产的、、。儿子们想来想去没法分:他们所得的都不是整数,即分别为、和,总不能把一匹马割成几块来分吧?聪明的邻居牵来了自己的1匹马,对他们说:“你们看,现在有12匹马了,老大得12匹的就是6匹,老二得12匹的就是3匹,老三得12匹的就是2匹,还剩一匹我照旧牵回家去。”这样把分的问题解决了。

  学习比的知识,我们都会变得和阿拉伯兄弟的那个邻居一样聪明。这个知识就是比的等值变形。

  解:︰︰=(×12)︰(×12)︰(×12)

  =6︰3︰2,

  而且6+3+2=11。

  所以,老大、老二、老三分别分得的马分别是6匹、3匹和2匹。

  这位阿拉伯邻居一定是一名优秀教师,他善于把上述抽象的演算过程直观地表现出来。他牵来自己的一匹马,凑成12匹马,这个12恰是这三个分数分母的最小公倍数,这个数也是把这三个分数的比化为整数比的关键所在。

  综上,可以看到分数基本性质的重要地位和作用:

  ⒈是把分数从一个分数单位换算为另一个分数单位的基础;

  ⒉是分数的通分与约分的根据,也是一些算式等值变形的重要途径之一;

  ⒊是分数集合被分成等值分数类别的分类标准,在每一个类别中都有且只有一个最简分数,使得分数运算的结果具有唯一性。

  六年级数学《分数基本性质的地位与作用》教案 7

  教学目标

  1、经历探索分数的基本性质的过程,理解分数的基本性质。

  2、能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

  3、经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

  教学重点:

  理解掌握分数的基本性质。

  教学难点:

  归纳性质

  教学设计

  (一)创设情境,引起学生参与兴趣

  1、猴王变戏法(学生模仿复习)

  除法式子变形

  分数与除法变形

  2、教师出示三只可爱的小猴图片,奖励听故事:

  有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成两块,分给第一只小猴一块,第二只小猴见到说:“太小了,我要两块。”猴王就把第二块饼平均切成四块,分给第二只小猴两块。第三只小猴更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切6块,分给第三只小猴三块。

  同学们,你知道哪只猴子分得的多吗?(哪只猴子分得的多?让学生发表自己的意见)

  3、教师出示三块大小一样的饼,通过师生分饼,观察验收后得出结论:三只猴子分得的饼一样多。聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的'呢?同学们想知道有什么规律吗?

  (二)探究新知

  1、动手操作、形象感知

  请同学们拿出三张相同形状同样大的纸,把每张纸都看作一个整体。动手折出平均分的份数2份、4份、6份,动笔把其中的1份、2份、3份画上阴影,再把阴影部分剪下来,将剪下的阴影部分重叠,比一比记录下结论。

  六年级数学《分数基本性质的地位与作用》教案 8

  一、教学目标

  1.经历探索分数基本性质的过程,理解分数的基本性质。

  2.能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

  3.经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

  二、教学重、难点

  教学重点是:分数的基本性质。

  教学难点是:对分数的基本性质的理解。

  三、教学方法

  采用了动手做一做、观察、比较、归纳和直观演示的方法

  四、教学过程

  (一)、故事引入,揭示课题

  1.教师讲故事。

  猴山上的猴子最喜欢吃猴王做的香蕉饼了。一天,猴王做了三个大小一样的香蕉饼给小猴们吃,它先把第一个香蕉饼切成四块,分给猴1一块。猴2看到后说:“太少了,我要两块。”猴王于是把第二个香蕉饼切成八块,分给猴2两块。猴3更贪心,它赶紧说:“我要三块,我要三块。”于是,猴王又把第三个香蕉饼切成十二块,分给猴3三块。小朋友,你知道哪只猴子分得多吗?

  讨论:好的:讨论哪只猴子分得的多?请同学们发表自己的观点。老师拿出三块大小一样的饼干,让学生观察、分配,最终得出结论:三只猴子分得的饼干数量是相同的。

  引导:猴王非常聪明,他想出了一个巧妙的方法来满足小猴子们的要求,并且确保每只小猴子都能得到公平的份额。这个方法就是利用分数的基本性质来进行分配。想要了解更多详情吗?学习了“分数的基本性质”就能揭开这个谜题哦!(板书课题)

  2.组织讨论。

  (1)三只猴子分得的饼同样多,说明它们分得的饼的分数是相等关系。具体来说,如果三只猴子分得的饼的分数分别为$a$、$b$、$c$,那么有$a=b=c$。三只猴子平均分的份数和表示的份数是不变的,只是分数的分子和分母变化了。例如,如果它们分得的饼是...,那么这三个分数虽然看起来不同,但实际上是相等的。

  (2)猴王给小猴子分了三块大小一样的香蕉,分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:2=4=6。

  (3)我们班有40名同学,按照学习小组划分,每组有10人。那么第一、二组学生的人数占全班学生人数的几分之几?请用分数表示,并计算出:12=24=2040。

  3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:

  分数的分子和分母变化了,分数的大小不变。

  它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。

  (二)、比较归纳,揭示规律

  1.出示思考题。

  比较每组分数的分子和分母:

  (1)从左往右看,是按照什么规律变化的?

  (2)从右往左看,又是按照什么规律变化的?

  让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。

  2.集体讨论,归纳性质。

  (1)34到68,分子、分母都乘以2得到。原来是把1平均分成4份,现在是把分的份数和表示份数都扩大2倍。

  板书:

  (2)34是怎样变化成912的呢?怎么填?学生回答后填空。

  (3)引导口述:34的分子、分母都乘以2,得到68,分数的大小不变。

  (4)学生们对几组分数进行了观察,发现分数的分子和分母都乘以相同的数时,分数的大小不变。经过讨论后,他们得出结论:分数的分子和分母同乘一个数,分数的大小不变。

  (板书:都乘以

  相同的数)

  (5)分数的.分子和分母从右往左看,它们都是按照递减的规律变化的。通过比较每组分数的分子和分母可以发现,分数的分子和分母都除以相同的数,分数的大小不变。

  (板书:都除以)

  (6)在乘法和除法的运算性质中,我们知道都乘以、都除以一个非零数,结果不变。如果去掉其中一个“都”字,换成“或者”,那么就不再满足这个性质了。在教科书中,分数的基本性质规定了“都乘以或者都除以一个非零数”,这样可以确保运算结果的准确性和稳定性。同时,性质中也强调了“零除外”,因为除数为零是不合法的操作,会导致数学运算的错误和混乱。因此,性质中规定了“零除外”是为了保证数学运算的正确性和合理性。

  (板书:零除外)

  (7)学生们现在我们一起来学习关于分数的基本性质。让我们找出这些性质中关键的词语,比如“都”、“相同的数”、“零除外”等。然后我们重点读一下这些关键词。接下来让我们一起读一读黑板上写的分数基本性质。

  3.出示例2:把12和1024化成分母是12而大小不变的分数。

  思考:要把12和1024化成分母是12而大小不变的分数,分子、分母怎么变化?变化的依据是什么?

  4.讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?

  5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。

  (三)、沟通说明,揭示联系

  通过举例,分数的基本性质与商不变性质之间存在着密切的联系。分数的基本性质包括分子、分母的乘除运算、分数的加减运算等,这些性质在运算过程中保持不变。而商不变性质是指在整数除法中,被除数与商的乘积等于除数。通过分数与除数的关系,我们可以利用整数除法中商不变的性质来解释分数的基本性质。因此,理解商不变性质有助于深入理解分数的基本性质。

  如:34=3÷4=(3×3)÷(4×3)=9÷12=912

  (四)、多层练习,巩固深化

  1.口答。(学生口答后,要求说出是怎样想的?)

  2.判断对错,并说明理由。(运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。)

  教学反思:

  学生是学习的主人,教师是数学学习的组织者、引导者与合作者。因此数学课堂教学中必须把教师的教变成学生的学,必须深入研究学法,建立探究式的学习模式。教师应调动学生的学习积极性,向学生提供充分从事数学学习的机会,帮助他们在自主观察、讨论、合作、探究学习中真正理解和掌握基本的数学知识和技能,充分发挥学生的能动性和创造性。一个突出的特点就是学法的设计,从大胆猜想、实验感知、观察讨论到概括总结,完全是为学生自主探究、合作交流的学习而设计的。具体表现在:

  1、学生在故事情境中大胆猜想。

  在一个热带岛屿上,有四只猴子发现了一堆香蕉。它们决定公平地分配这堆香蕉,但却遇到了难题。最大的猴子自称为“猴王”,要求先拿走一部分香蕉。其他三只猴子不甘心,于是提出了一个办法:每只猴子轮流从香蕉堆中拿走一部分,直到香蕉被拿完为止。猴王同意了这个提议,于是开始了“猴王分饼”的游戏。第一只猴子拿走了1/4的香蕉,第二只猴子拿走了1/5的香蕉,第三只猴子拿走了1/3的香蕉。最后一只猴王拿走了剩下的30根香蕉。请问,最初这堆香蕉一共有多少根?

  2、学生在自主探索中科学验证。

  在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。

  3、让学生在分层练习中巩固深化。

  在设计练习时,要紧扣重点,设计新颖多样的题目,设置不同难度层次,让学生在练习中逐步提高。首先是基础练习,帮助学生理解概念,检查他们对新知识的掌握情况;其次是巩固练习,加深对知识的理解;最后是通过游戏激发学生的学习兴趣,加深对知识的理解,活跃课堂气氛。这样设计不仅考虑到了学生认知发展的特点,也拓展了他们的思维空间,真正做到了理论联系实际。

  在教学过程中,我们应该注重引导学生思考,让他们通过多种方法去验证结论的正确性。我们不能局限于老师提供的几种方法,而应该放手让学生自由探索。数学教学的目的不是仅仅传授答案,而是培养学生的思维能力。因此,我们应该鼓励学生尝试不同的途径,去验证和证明数学结论,从而激发他们的数学思维,培养他们的解决问题的能力。

  六年级数学《分数基本性质的地位与作用》教案 9

  教学目标

  1、学生通过实际操作和观察,预测和猜想分数的基本性质,然后进行实验分析,最终通过合情推理来探究创造,从而深入理解和掌握分数的特点。通过这个过程,学生将会发现分数与整数除法中商不变性质之间的联系。

  2、当我们学习分数时,需要掌握将一个分数转化为另一个分母或分子不变但形式不同的分数的技巧。这样做可以帮助我们更好地理解分数的基本性质,为后续学习约分和通分打下基础。

  3、培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。

  教学重点

  使学生理解分数的基本性质。

  教学难点

  让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

  教学过程

  一、故事情景引入

  同学们,每年的中秋节,我们家都会准备一些特别的食物来庆祝这个传统节日。除了赏月、吃柚子和猜灯谜外,最让人期待的当属美味的月饼了。去年的中秋节,我家楼下的王大妈家里发生了一件有趣的事情,大家想不想知道呢?

  好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的`孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。

  同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。

  讨论完了请举手。

  生甲:“我觉得不公平,小红分得多。”

  生乙:“我觉得小明分得多。”

  生丙:“我觉得公平,他们三个分得一样多。”

  师:看起来我们班的同学也产生了分歧,围绕着李奶奶分发月饼的公平性展开讨论。待本节课结束,他们将会有更清晰的认识。

  二、新授

  师:请拿出你们的学具袋,看看里面有些什么东西呢?(方块)有几个呢?(四个)

  请你们把这三张圆片叠起来,比一比大小,看看怎么样?

  生:“三张圆片一样大。”

  1.师:“下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。”

  首先,请在第一张圆片上表示出它的1/3;

  再在第二张圆片上表示出它的2/6;

  然后在第三张圆片上表示出它的3/9。

  好了,大家动手分一分。(教师巡视指导)

  2、师:“分完了的请举手?

  老师准备了三张同样大小的圆片,请问哪位同学可以分享一下你是如何将这三张圆片分成相等的部分的?

  生:“把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。”生:“把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。”师:“那九分之三又是怎么得到的呢?大家一起说。”

  生:将这个圆形纸片分成九等份,然后取其中的三份,这样就得到了它的九分之三。教师可以操作将纸片分割成九份,并将其贴在黑板上展示给学生。

  3、师:“同学们,观察这些圆的阴影部分,你有什么发现?”

  小结:原来三个圆的阴影部分是同样大的。

  师:“现在再来评判一下,奶奶分月饼公平吗?为什么?”(请几名学生回答)

  生:“奶奶分月饼是公平的,因为他们三个分得的月饼一样多。”

  师:“现在我们的意见都统一了,奶奶是非常公平的,他们三个人分的月饼一样多。那你觉得1/3、2/6、3/9这三个分数的大小怎么样呢?”

  六年级数学《分数基本性质的地位与作用》教案 10

  教学要求

  ①使学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。

  ②培养学生观察、分析和抽象概括能力。③渗透“事物之间是相互联系”的辩证唯物主义观点。

  教学重点理解分数的基本性质。

  教学用具每位学生准备三张同样的长方形纸条;教师:纸条、投影片等。

  教学过程

  一、创设情境

  1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?

  2.说一说:(1)商不变的性质是什么?(2)分数与除法的关系是什么?

  3.填空。

  1÷2=(1×2)÷(2×2)==。

  二、揭示课题

  让学生大胆猜测:在除法里有商不变的性质,在分数里会不会也有类似的性质存在呢?这个性质是什么呢?

  随着学生的回答,教师板书课题:分数的基本性质。

  三、探索研究

  1.动手操作,验证性质。

  (1)让学生拿出三张同样的长方形纸条,分别平均分成2份、4份、6份,并分别把其中的1份、2份、3份涂上色,把涂色的部分用分数表示出来。

  (2)观察比较后引导学生得出:==

  (3)从左往右看:==

  由变成,平均分的份数和表示的份数有什么变化?

  把平均分的份数和表示的份数都乘以2,就得到,即==(板书)。

  把平均分的份数和表示的份数都乘以3,就得到,即:==(板书)。

  引导学生初步小结得出:分数的分子、分母同时乘以相同的数,分数的大小不变。

  (4)从右往左看:==

  引导学生观察明确:的分子、分母同时除以2,得到。同理,的分子、分母同时除以3,也可以得到。

  板书:====

  让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。

  (5)引导学生概括出分数的基本性质,并与前面的猜想相回应。

  (6)提问:这里的“相同的数“,是不是任何数都可以呢?(补充板书:零除外)

  2.分数的基本性质与商不变的性质的比较。

  在除法里有商不变的性质,在分数里有分数的基本性质。

  想一想:根据分数与除法的关系以及整数除法中商不变的性质,你能说明分数的基本性质吗?

  3.学习把分数化成指定分母而大小不变的分数。

  (1)出示例2,帮助学生理解题意。

  (2)启发:要把和化成分母是12而大小不变的分数,分子应该怎样变化?变化的根据是什么?

  (3)让学生在书上填空,请一名学生口答。教师板书:

  ====

  4.练习。教材第108页的做一做。

  四、课堂实践。

  练习二十三的1、3题。

  五、课堂小结

  1.这节课我们学习了什么内容?

  2.什么是分数的基本性质?

  六、课堂作业

  练习二十三的第2题。

  七、思考练习

  练习二十三的第10题。

  教学反思:

  “分数的基本性质”是西师版小学数学五年级下册的内容,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点课。这节课我大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的.不仅是数学基本知识,更重要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。目的是让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法,思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。

  这节课是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的,我是这样设计教学的:

  1、通过商不变的性质、除法与分数的关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。让学生根据商不变的性质大胆猜想,分数的基本性质是什么?说出自己的想法。

  2、充分发挥学生主体作用,引导学生自主探究。让学生通过折纸游戏,操作、观察、比较,验证自己的猜想。涂色部分可用不同的分数表示,从而培养学生的动手能力,以及观察问题、解决问题的能力。

  3、运用知识,解决实际问题。为了把知识转化为能力,练习的设计注意了典型性、多样性、深刻性、灵活性。归纳总结出分数的基本性质后,先进行基本练习,深化对分数的基本性质认识。在学完整个新知以后,在进行综合练习,巩固提高。通过应用拓展,使学生加深对分数的基本性质的理解,并培养学生运用所学的知识解决实际问题的能力。

  4、0除外的环节设计。在学生归纳出分数的基不性质后,缺少0除外这个难点,我设计了判断一个分数的分子和分母同时乘0,让学生通过练习,马上想到0不能做除数,在分数中分母不能为0,引出:分子和分母同时乘或除以相同的数,必须0除外,突破难点。

  六年级数学《分数基本性质的地位与作用》教案 11

  教学目标

  1、学生能理解和掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的性质之间的联系。

  2、学生能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。

  3、培养学生观察、比较、抽象概括的逻辑思维能力,渗透“事物之间是相互联系的”辩证唯物主义观点。

  教学重、难点:

  理解分数基本性质的含义,掌握分数基本性质的推导过程。运用分数的基本性质解决实际问题。

  教学过程:

  一、复习旧知,了解学习起点

  二、创设情境,激趣引入

  课件动画显示:蓝猫、菲菲、霸王龙最喜欢吃淘气做的饼。有一天淘气做了3块大小一样的饼分给蓝猫、菲菲、霸王龙。蓝猫说:“我功劳最大,我要吃一大块。”菲菲说:“我要吃两块。”霸王龙抢着说:“我个头最大,我要吃3块。”淘气想了想便动手切饼满足了他们的要求,并向他们提问:“刚才,我把3个同样大小的饼,平均分成2份、4份、6份,分别给了你们1块、2块、3块,你们知道谁吃的多吗?”淘气的问题,立刻引起了他们的争论。同学们,你们知道他们谁吃得多吗?

  三、探究新知,揭示规律

  1.动手操作,形象感知。

  (1)折。请学生拿出3张同样大小的圆形纸,把每张圆形纸都看做单位“1”,用手分别平均折成2份、4份、6份。

  (2)画。在折好的圆形纸上,分别把其中的1份、2份、3份画上阴影。

  (3)剪。把圆中的阴影部分剪下来。

  (4)比。把剪下的.阴影部分重叠,比一比结果怎样。

  2.观察比较,探究规律。

  (1)通过动手操作,谁能说一说动画片中蓝猫、菲菲、霸王龙各吃了一个饼的几分之几?(板书。)

  (2)你认为他们谁吃的多?请到讲台上一边演示一边讲一讲。

  学生汇报后,教师用电脑演示。

  把3块同样大小的饼分别平均分成2份、4份、6份,依次表示。把平移、重叠,明显地看出块饼、块饼、块饼大小相等。通过分饼、观察、验证得出结论:“蓝猫、菲菲、霸王龙分的饼一样多。”

  (3)既然他们3个吃的同样多,那么、的大小怎样?我们可以用什么符号把他们连接起来?(板书。)

  (4)聪明的淘气是用什么办法既满足蓝猫、菲菲、霸王龙的要求,又分得那么公平呢?这就是我们今天研究的内容“分数的基本性质”。(板书课题。)

  (5)这3个分数的分子、分母都不同,为什么分数的大小却相等?你们能找出它们的变化规律吗?请同学们4人为一组,讨论这几个问题。(课件出示讨论题。)

  讨论题:

  ①它们之间有什么关系?它们的什么变了?什么没有变?

  ②从左往右看,是按照什么规律变化的?从右往左看,又是按照什么规律变化的呢?

  (6)学生汇报,师生讨论情况。

  师:这3个分数是相等的关系。可以写成,它们的分子、分母变了,而分数的大小没有变。

  师:从左往右看,由得到,是把的分子、分母都乘以2,也就是把分的份数和表示的份数都扩大2倍,就得到。同理的分子、分母都乘以3,就得到,而分数的大小不变。(板书:都乘以相同的数。)

  从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析,比较,得出:分数的分子和分母都除以相同的数,分数的大小不变。

  (7)抓住焦点,辨中求真。

  的分子、分母能否同时乘以或者除以零呢?围绕这个问题展开讨论、辩论。通过讨论、争辩,使学生认识到“因为分数的分子、分母都乘以0,则分数成为”。

  六年级数学《分数基本性质的地位与作用》教案 12

  教学目标:

  1、通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。

  2、培养学生的观察能力、动手操作能力和分析概括能力等。

  3、让学生在学习过程中养成互相帮助、团结协作的良好品德。

  重点难点:

  从相等的分数中看出变与不变,观察、发现、概括其中的规律。理解分数的基本性质。

  教具学具: 课件,每人一张白纸,一张圆纸片,彩笔

  教学时间:1课时

  教学流程:

  一、复习引入

  1、120÷30的商是多少?被除数和除数同时扩大3倍,商是多少?被除数和除数同时缩小10倍,商是多少?

  120÷30=4

  (120×3)÷(30×3)

  =360÷90

  =4

  120÷30=4

  (120÷10)÷(30÷10)

  =12÷3

  =4

  在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。

  除法与分数之间有什么联系?

  被除数÷ 除数=被除数/除数

  教师板书:分数的基本性质

  二、动手操作

  (1)用分数表示涂色部分。

  ( )

  ( ) )

  ( ) )

  ①请大家拿出1张长方形纸片,现在我们把它对折平均分成4份,涂出其中的3份,写上分数。

  ②把它继续对折平均分成8份,看看原来的3/4现在成了?(6/8)

  ③继续折成16份,看看原来的3/4现在又成了?(12/16)

  (2)小结:原来,这张纸的3/4 、6/8、 和它的12/16同样大!看来不管选择哪种折法,分到的数都一样多!

  (教师随机板书 )3/4=3×2/4×2=6/8=6×2/8×2=12/16

  (2)用分数表示涂色部分。

  ( ) )

  ( ) )

  ( ) )

  根据上面的过程,你能得到一组相等的`分数吗?

  8/12= 8÷2/12÷2= 4÷2/6÷2=2/3

  三、发现规律

  1、请大家观察每个等式中的两个分数,它们的分子。分母是怎样变化的?

  学生观察、思考,完成上面的图形,再在小组内交流。

  学生交流后,教师集中指导观察,板书这组数字,说出其中的规律。

  3/4=6/8=12/16 8/12=4/6=2/3

  从这些数字中可以得出:

  分数的分子和分母同时乘或者除以相同的数,分数的大小不变。(相同的数,这个数能不能是0 ?)

  教师举例说明:3/4,8/12分子和分母分别乘以零,分数大小怎么样?

  得出分数基本性质: 分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。这叫做分数基本性质。

  在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。这叫做商不变性质。

  3、课件出一组分数让学生练习填

  2/3=()/12 6/21=()/7 3/5=21/() 27/39=9/() 5/8=20/() 24/42=()/7 2/5=()/25 4/6=()/()

  四、练一练(课件出示)

  1、判断.(手势表示。)

  (1)分数的分子、分母都乘或除以相同的数,分数的大小不变。() (2)把 15 /20 的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。()

  (3) 3 /4 的分子乘3,分母除以3,分数的大小不变。 ( )

  ( 4)把3/5的分子加上4,要使分数的大小不变,分母加4。 ( )

  2、把5 /6和1/4都化成分母是12大小不变的分数。(课件出示 )

  3、数学游戏(课件出示)

  说出相等的分数 1/4和2/8

  (1)你能根据分数的基本性质,再写出一组相等的分数?

  所写的分数是否相等?你是怎样想的?

  (2)根据分数与除法的关系,你能用商不变的规律来说明分数的基本性质吗?

  五、课本练习中的第1,2题。

  六、课堂总结

  这节课你学到了什么?什么是分数的基本性质?你是怎样理解的分数的基本性质要注意什么?我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?

  七、板书设计:

  3/4=3×2/4×2=6/8=6×2/8×2=12/16

  8/12= 8÷2/12÷2= 4÷2/6÷2=2/3

  分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。这叫做分数基本性质。

【六年级数学《分数基本性质的地位与作用》教案】相关文章:

《分数的基本性质》数学教学反思08-22

小学数学《分数的基本性质》说课稿03-19

数学《分数基本性质》教学设计09-26

分数的基本性质08-23

人教版小学数学《分数的基本性质》说课稿06-28

小学数学分数的基本性质说课稿10-05

分数基本性质说课稿07-10

分数的基本性质说课稿09-29

分数基本性质说课稿10-30

分数的基本性质说课稿01-19