绝对值教案
绝对值是指一个数在数轴上所对应点到原点的距离,用“| |”来表示。下面是小编为大家收集的绝对值教案,欢迎阅读与收藏。
初中数学关于绝对值教案
作为一位杰出的老师,就有可能用到教案,教案有助于顺利而有效地开展教学活动。我们该怎么去写教案呢?下面是小编帮大家整理的初中数学关于绝对值教案,欢迎阅读,希望大家能够喜欢。
初中数学关于绝对值教案1
●教学内容
七年级上册课本11----12页1.2.4绝对值
●教学目标
1.知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。
2.过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。
3.情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。
●教学重点与难点
教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。
●教学准备
多媒体课件
●教学过程
一、创设问题情境
1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记作?__________,B处记作__________。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。
《绝对值与相反数》教案设计
教学目标:
1.知道一个数的绝对值与这个数本身或它的相反数有什么关系;
2.会利用绝对值比较两个有理数大小;
3.在具体进行两个负数的大小比较中,培养推理论证能力,体会数形结合与转化的思想方法.
教学重点:
知道一个数的绝对值与这个数本身或它的相反数有什么关系;会利用绝对值比较两个有理数大小.
教学难点:
会利用绝对值比较两个有理数大小.
教学过程:
一、议一议:
1.根据绝对值与相反数的意义填空:
(1)|2.3|= , = ,|6|= ;
(2)|-5|= , |-10.5|= ,|- |= ;-5的相反数是______,-10.5的相反数是______,- 的'相反数是______;
(3)|0|=______,0的相反数是______.
2.(1)任意说出一个负数,并说出它的绝对值、它的相反数.
(2)一个数的绝对值与这个数本身或它的相反数有什么关系?
3.(1)2与3哪个大?这两个数的绝对值哪个大?
(2)-1与-4哪个大?这两个数的绝对值哪个大?
(3)任意写出两个负数,并说出这两个负数哪个大?他们的绝对值哪个大?
(4)两个有理数的大小与这两个数的绝对值的大小有什么关系?
二、展示交流
活动一、探究一个数的绝对值与这个数本身或它的相反数之间的关系
小组讨论:
1.一个数的绝对值一定与这个数本身相等吗?
2.一个数的绝对值一定与它的相反数相等吗?
绝对值与相反数教案
学习目标:
1、知道一个数的绝对值与这个数的本身或它的相反数的关系,并会根据这种关系求一个数的绝对值.
2、会运用绝对值比较两个有理数的大小.
3、会综合应用绝对值、相反数、数轴的知识解题
学习重点:
1、求一个数的绝对值与它本身或它的相反数的关系.
2、比较两个数的大小.
学习难点:
绝对值的综合运用
学习过程:
一、情景导入
1.根据绝对值与相反数的意义填空:
(1) ∣2.3∣= , ∣ ∣= , ∣6∣= ;
(2) ∣-5∣= , ∣-10.5∣= , ∣- ∣= ,
(3)-5的相反数是 .-10.5的相反数是 (- )的相反数 .
(4) ∣0∣= .0的相反数是 .
二、自主探索
1、讨论:
一个数的绝对值与它的本身和它的相反数有什么关系?
你得到的结论是:
(1)
(2)
(3)
例1、求下列各数的绝对值:
+6, -3, -2.7, 0, - (-3.2).
2、比较两数的大小
提问:
用或填空:
(1) +3 0 , -2 0 ,
+1.02 -3.2
(2) 2 +3 , ∣2∣ ∣+3∣
-2 -5 , ∣-2∣ ∣-5∣
-1.5 -4 ∣-1.5∣ ∣-4∣
讨论:
两个正数,绝对值大的正数 ,
两个负数,绝对值大的`负数 .
例2: 比较-9.5与-1.75的大小
练习:比较-2.8与-4.1的大小
《绝对值》教案模板
教学目标
1.了解的概念,会求有理数的;
2.会利用比较两个负数的大小;
3.在概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力.
教学建议
一、重点、难点分析
概念 既是本节的教学重点又是教学难点 。关于的概念,需要明确的是无论是的几何定义,还是的代数定义,都揭示了的一个重要性质——非负性,也就是说,任何一个有理数的都是非负数,即无论a取任意有理数,都有 。
教材上的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的'概念、画法、利用数轴比较有理数的大小、相反数,以及,通过数轴,这些知识都联系在一起了。此外,0的是0,从几何定义出发,就十分容易理解了。
二、知识结构
的定义 的表示方法 用比较有理数的大小
三、教法建议
用语言叙述的定义,用解析式的形式给出的定义,或利用数轴定义,从理论上讲都是可以的.初学用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示的定义,即
在教学中,只能突出一种定义,否则容易引起混乱.可以把利用数轴给出的定义作为的一种直观解释.
此外,要反复提醒学生:一个有理数的不能是负数,但不能说一定是正数.“非负数”的概念视学生的情况,逐步渗透,逐步提出.
四、有关的一些内容
1.的代数定义
一个正数的是它本身;一个负数的是它的相反数;零的是零.
2.的几何定义
相反数与绝对值数学课堂教案
学习目的
1.使学生理解相反数的意义;
2.给出一个数,能求出它的相反数;
3.理解绝对值的意义,熟悉绝对值符号;
4.给一个数,能求它的绝对值。
教学重点、难点:
1.理解掌握双重符号的化简法则。
2.能正确理解绝对值在数轴上表示的意义。
教学过程
一、交流与发现:
1.相反数的概念:
首先,咱们来画一条数轴,然后在数轴上标出下列各点:3和-3,1.6和-1.6,请同学们观察:(1)上述这两对数有什么特点?(2)表示这两对数的数轴上的点有什么特点?(3)请你再写出同样的几对点来?
同学们通过观察思考可以总结出以下几点:
(1)上面的这两对数中,每一对数,只有符号不同。
(2)这两对数所对应的点中每一组中的两个点,一个在原点的左边,一个在原点的右边,而且离开原点的距离相同。
练一练:请同学们举出几个相反数的例子
(强调)我们还规定:0的`相反数是0
说明:
(1)注意理解相反数定义中“只有”的含义。
(2)相反数是相对而言的,即如果6是-6的相反数,则-6也是6的相反数,因而相反数全是成对出现的。
(3)两个互为相反数的数在数轴上的对应点(除0外),在原点的两旁,并且距离原点距离相等的两个点,至于0的相反数是0的几何意义,可理解为这两点距离原点都是零。
二、典型例题
例(1)分别指出9和-7的相反数;
解:由相反数的定义可知:
(1)9的相反数是-9,-7的相反数是7;
数轴相反数与绝对值课堂教案
数轴、相反数与绝对值
教学目标:
1、知识与技能:(1)借助数轴理解相反数的概念,会求一个数的相反数。
(2)培养学生观察、猜想、验证等能力,初步形成数形结合的思想。
2、过程与方法:在教师的指导下,让学生通过观察、比较,归纳出相反数的概念和性质。
重点、难点
1、重点:理解相反数的意义,会求一个数的相反数。
2、难点:对相反数意义的理解。
教学过程:
一、创设情景,导入新课
1、请两位同学背靠背,一个向左走5步,另一个向右走5步,如果向右走为正,向左、向右分别记作什么?(生答:+5、-5),+5与-5这样成对出现的数就是为们今天要学习的相反数。
二、合作交流,解读探究
1、(出示小黑板)
教师提出问题:上图中数轴上的点B和点D表示的数各是什么?有什么关系?
学生活动:分小组讨论,与同伴交流。
教师活动:请几位同学说出他们讨论的结果,指出点B表示+2.6,点D表示-2.6,它们只有符号不同,到原点的距离都是2.6。
2、(板书):如果两个数只有符号不同,那么我们将其中一个数叫做另一个数的相反数,也称这两个数互为相反数。
0的相反数是0
3、学生活动:在数轴上,表示互为相反数的两个点有什么关系?
学生代表回答后,小结:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。
4、练习填空:
3的相反数是 ; -6的相反数是 ;-(-3)= ;-(-0.8)= ;
数学绝对值教案范例
数学绝对值教案范例
学习目标
1、 知识目标:借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两负数的大小。
2、 能力目标:会通过学习绝对值的概念,应用绝对值解决实际问题,体会绝对值的意义,并进一步明确数学知识在实际生活中的用途。
3、 情感目标:通过学习,让学生能积极参与数学学习活动,学会与人合作,与人交流。
学习过程
一、前置准备
1、 复习知识:上节课我们学习了数轴,现在下边画一条数轴,并标出表示6、-6、-2、0及它们相反数的点_
2、 创设情境,导入新课:大家设想一下,如果在你刚才所画数轴的+6和-6处各有一只蚂蚁向原点爬去,会是谁先爬到呢?讨论一下,答案是____________
二、自主学习,探究新知
1、刚才问的大家一定回答上来了,原因是它们到原点的________相等的。
2、6互为相反数,只有________不同,但它们到________相反的。
3、 在数轴上,一个数所对应的点到原点的距离叫做该数的________,如+2的绝对值等于2,记作︱+2︱=2。
三、合作交流
1、 想一想+6和-6的绝对值分别是谁,有什么关系?________3呢?︱+3︱=_____
︱-3︱=_____你知道3怎么说了吗?_____________
2、分别写出下列各数的绝对值︱5︱=_____,︱-2︱=_____,︱+4/9︱=_____,︱0︱=_____,︱-7.8︱=_____。
数学绝对值与相反数教案
数学绝对值与相反数教案
教学目标
1、知识与技能:初步理解绝对值的概念,理解绝对值的几何意义,会通过画数轴的方法求一个数的绝对值。
2、过程与方法:经历将实际问题数学化的过程,感受数学与生活的关系,
3、情感、态度与价值观:经历将实际问题数学化的过程,感受数学与生活的联系。进一步渗透数形结合的思想,感知数学知识具有普遍的联系性。
教学重点:绝对值的概念.通过画数轴的方法求一个数的绝对值.
教学难点:理解绝对值的几何意义.
教学过程:
1.课间预习
小明的家在学校西边3km处,小丽的家在学校东边2km处,如下图,我们可以把学校门前的大街想象为数轴,把学校定为原点,把小明、小丽两家看成数轴上的两点A、B.
-2
-1
2
1
A
-3
B
`
思考:1、A、B两点离原点的距离各是多少? 2、A、B两点离原点的距离与它们表示的数是正数还是负数有没有关系? 3、在数轴上分别描出下列数所对应的点,并指出它们到原点的距离:
2.自主探究 我们把数轴上表示一个数的点与原点的距离,叫做这个数的绝对值。(absolutevalue) 例如上图,表示-3的点A到原点的距离是3,所以-3的绝对值是3,
问:表示-2点到原点的距离是,所以-2的绝对值是.
表示2点到原点的距离是,所以2的绝对值是.
表示0到原点的距离是,所以0的绝对值是.
重点也也是难点
注意:绝对值为正数的数有两个。
绝对值的教案
绝对值的教案
绝对值
教学目标
1.了解绝对值的概念,会求有理数的绝对值;
2.会利用绝对值比较两个负数的大小;
3.在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力.
教学建议
一、重点、难点分析
绝对值概念既是本节的教学重点又是教学难点。关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有
。
教材上绝对值的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。此外,0的绝对值是0,从几何定义出发,就十分容易理解了。
二、知识结构
绝对值的定义
绝对值的表示方法
用绝对值比较有理数的大小
三、教法建议
用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的.初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即
在教学中,只能突出一种定义,否则容易引起混乱.可以把利用数轴给出的定义作为绝对值的一种直观解释.
此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数.“非负数”的概念视学生的情况,逐步渗透,逐步提出.
数轴相反数与绝对值教案
数轴相反数与绝对值教案
1.2.1数轴、相反数与绝对值
学习目标
1、了解数轴的概念和数轴的画法,掌握数轴的三要素;
2、会用数轴上的点表示有理数,会利用数轴比较有理数的大小;
3、初步了解数形结合的思想方法,培养相互联系的观点。
重点:正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。
难点:正确理解有理数与数轴上点的'对应关系。
学习过程
一、复习回顾
什么是正数、负数、有理数?
二、自主探究
1、你知道温度计吗?温度计的形状是什么?它上面的刻度和数字有什么样的特点?
2、数轴的概念
定义:规定了原点、正方向和单位长度的直线叫做数轴。
这里包含两个内容:
(1)数轴的三要素:原点、正方向、单位长度缺一不可。
原点用“O”表示,正方向向右,单位长度一般为1。
(2)这三个要素都是规定的。
3、数轴的画法
(1)画直线(一般画成水平的)、定原点,标出原点“O”.
(2)取原点向右方向为正方向,并标出箭头.
(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,
3…各点。具体如下图。
(4)标注数字时,负数的次序不能写错,如下图。
4、数轴定义的理解
(1)规定了原点、正方向和单位长度的直线叫做数轴,如图1所示.
(2)所有的有理数,都可以用数轴上的点表示.例如:在数轴上画出表示下列各数的点(如图2).